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Dynamic structure of the cytoplasm
Hyojun Kim and Morgan Delarue
The cytoplasm is a dense and complex milieu in which a
plethora of biochemical reactions occur. Its structure is not
understood so far, albeit being central to cellular functioning. In
this review, we highlight a novel perspective in which the
physical properties of the cytoplasm are regulated in space
and time and actively contribute to cellular function. Further-
more, we underscore recent findings that the dynamic forma-
tion of local assemblies within the cytoplasm, such as
condensates and polysomes, serves as a key regulator of
mesoscale cytoplasmic dynamics.
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Introduction
The cytoplasm is the milieu in which cellular processes
occur in the interspace between the cell membrane and
organelles, including the nucleus. Contrary to a dilute
solution where reactants and substrates freely diffuse,
the cytoplasmic aqueous phase, called the cytosol, is
densely packed with macromolecules, with unique
structural propertiesdsuch as electrostatic interactions
and steric effectsdthat significantly restrict passive
diffusion and distribution of biomolecules and organ-

elles. Translational diffusivity can vary significantly be-
tween organisms and cell types, ranging fromw0.1 mm2/s
in bacteria [1] to w0.3 mm2/s in fungi [2,3] and
w0.2e0.6 mm2/s in cancer cells [4e6], as measured
using probes (40 nm in diameter) of a size similar to
that of ribosomes. Over the past decades, remarkable
discoveries have been made about the microscopic
organization of the cytoplasm, including the mesoscale
dynamics led by macromolecular crowding [7],
www.sciencedirect.com
biomolecular condensation [8], and active dynamics
influenced by cytoskeleton [9,10], as well as their
physiological roles. The physical properties of the cytosol
are evolutionarily optimized and finely regulated,
with their modification exerting comprehensive effects
on cellular processes [11]. Also, changes in cytoplasmic
structure in response to shifts in the physicochemical
environment are increasingly recognized as a mechanism
for cellular information processing [12].

This brief review will focus on recent discoveries over
the past three years regarding the dynamic structural

and physicochemical properties of the cytoplasm and
their physiological implications, mostly studied in
vertebrate, yeast, and bacterial cells. Note that we will
not be discussing the role of cytoskeletal elements, to
remain general, and which are known to also structure
the cytoplasm of animal cells. We regretfully acknowl-
edge the excellent topics and studies could have unin-
tentionally omitted. There are several excellent and
comprehensive recent reviews that extensively cover
the passive and active rheology of the cytoplasm driven
by cytoskeletal structures [13], as well as the physical

origins and biochemical roles of its crowded environ-
ment [7,14]. Similarly, even if osmotically challenging
cells affect their volume and consequently their
crowding, we will not be discussing regulatory volume
increase or decrease, as we here focus on crowding. Our
review highlights recent discoveries regarding changes
in the physical properties of the cytosol and the for-
mation of structural assemblies within it rather than the
cytoskeleton and membrane-bound organelles. It has
been revealed that the physiological functions of the
cytoplasm can be dynamically orchestrated through

global regulation of cytosolic density and charge, as well
as through the reversible formation of condensates
and polysomes.
Cytoplasmic density: from the osmolyte
scale to the macromolecular scale
The density of biomolecules within the cytoplasm is a
fundamental structural variable, essential for optimizing
metabolism and cellular function [15]. The density of
small molecules dwhich function as viscogens and
osmolytesd and of macromolecules together regulate
cytoplasmic viscosity and excluded volume, collectively
governing particle diffusion, which can influence reac-
tion rates. Most of the cytoplasmic volume is occupied
by particles of the mesoscale (diameter 10e100 nm),
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and the effects of macromolecular crowding dominate
mesoscale particle dynamics and assembly. While the
behavior of particles much smaller than macromolecules
is not affected by the steric effects of crowding [16], the
presence of viscogens, such as trehalose and glycogen,
can limit the behavior of particles of all ranges of scale
[17,18]. By modulating the concentration of crowding
agents and viscogen, cells appear to process physiolog-

ical and stress-responsive processes on a global scale.

Cells can adjust cytoplasmic viscosity to optimize
metabolic efficiency and adapt to environmental con-
ditions by modulating the biosynthesis and uptake of
small molecules. In response to acute hyperosmotic
shock, shrunken S. cerevisiae cells rapidly produce glyc-
erol, an osmolyte, through glycolysis-related stress
signaling, restoring both original cell volume and protein
diffusion levels within minutes. Moreover, the same
cells exposed to high temperatures quickly induce the

synthesis of glycogen and trehalose, two carbohydrates
that increase intracellular viscosity, thereby slowing
diffusion-driven reaction rates accelerated by tempera-
ture [17]. When the cell enters into dormancy, a
Figure 1

Diverse landscapes of cytoplasmic structures. (a) The cytoplasm of dorma
high concentration of trehalose, resulting in diffusion rates for 40 nm particles
fluidization via trehalose degradation is essential for dormancy breaking in fis
determined by their size and charge. Small particles (20 nm) are enriched with
are preferentially excluded due to the nucleoid’s size-selective migration filter
contrast with the positively charged nucleoid, result in the localization of parti
negative. This suggests that particle localization within cells reflects novel prop
cells against osmotic pressure or thermal fluctuations. Dissolved macromolecu
their mobility in the cytoplasm and restricting their availability for biological pr
releasing some bound water and generating free water molecules. Depending
bound water through protein condensation and dissolution [50]. (d) Cytoplasmi
of mRNA into P-bodies (process bodies) and SGs (stress granules). This pro
cytoplasmic fluidization [59].
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reversible state of metabolic stasis under unfavorable
cell cycle conditions, the cytosol displays solid or glass-
like properties across various organisms [19e21].
Recent studies show that dormant fission yeast spores
exhibit a 40 nm particle diffusion coefficient that is 20
times lower than that in nutrient-rich vegetative cells,
attributed to the accumulation of trehalose at over 1000-
fold higher levels (Figure 1a) [18]**. Interestingly, de-

fects in trehalose degradation inhibited germination,
establishing the necessity of cytosolic fluidization in
this process.

The density of macromolecules, including proteins and
RNA, is a key variable that regulates diffusion dynamics
at mesoscopic scales in the cytoplasm by controlling
excluded volume. An optimal protein concentration
appears necessary for cellular metabolism [22,23] with
cytoplasmic mass density tightly regulated within a
narrow range [24,25]. In proliferating cells, cytoplasmic

mass density shows minimal variation with cell size,
suggesting that total osmolytes generally scale with dry
mass during cell growth [26,27]. In three human cell
lines, direct pharmacological inhibition of protein
nt fission yeast cells is extremely crowded due to macromolecules and a
being 20–40 times slower compared to vegetative cells. Cytoplasmic

sion yeast [18]. (b) In E. coli, particle motion and local concentrations are
in the nucleoid, whereas larger particles (50 nm) and polysome complexes
. At the same time, the negatively charged polysomes and ribosomes, in
cles shifts towards the cellular periphery as the charge becomes less
erties of fundamental processes [39]. (c) Biomolecular condensates buffer
les, such as proteins, bind one or more layers of water molecules, limiting
ocesses. However, proteins can condense into membraneless droplets,
on temperature and osmotic pressure, cells adjust the fraction of free and
c fluidization requires the disassembly of polysomes and the sequestration
cess facilitates the formation of new mesoscale structures, promoting
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synthesis, degradation, and mTOR activity led to dra-
matic changes in protein synthesis rate and cellular dry
mass, though with surprisingly minor effects on cyto-
plasmic mass density. In vitro experiments with Xenopus
egg extracts demonstrated that protein synthesis rates
are maximized at physiological (1x) cytoplasmic con-
centrations, while degradation rates increase linearly up
to a high concentration (1.8x), suggesting a feedback

mechanism that maintains protein concentration ho-
meostasis through balanced synthesis and degradation
rates [28]**. Overall, the importance of protein density
homeostasis for efficient metabolism and growth has
recently been underscored, demonstrating resilience to
changes in synthesis and degradation rates.

Excessive cellular growth can lead to cytoplasmic dilu-
tion and contribute to aging [29]. In budding yeast,
chemical or genetic disruption of cell cycle progression
in the G1 phase results in increased cell size. As cell size

exceeds approximately twice the normal limit, RNA and
protein synthesis rates do not scale accordingly, leading
to a substantial decrease in their density. Several studies
have shown that DNA copy number becomes rate-
limiting in large cells, imposing a universal threshold
for the production demands of translation templates
proportionate to cell size in mammalian cells and yeasts
[30]**. The enlarged cells have activated response
pathways to environmental stress, and their proteomes
are also remodeled into a phenotype similar to starved
cells. The mechanism of this stress pathway is still un-

clear, but an interesting question is whether the
remodeled proteome proceeds in a direction that
physically compensates for the diluted cytoplasm. On
the other hand, the causality between cytoplasmic
mesoscale dilution and stress is still unclear. The
abundance of ribosomes, which are the main intracel-
lular mesoscale crowders, is reduced not only by envi-
ronmental stress [31] but also by treatment with the
rapamycin treatment, a ribosome biogenesis inhibitor,
fluidizing the cytoplasm with increased mobility of 40-
nm passive nanoparticles [4]. In the case of cell
enlargement, on the contrary, cytoplasmic decrowding is

suggested to induce environmental stress responses.
Further investigation will be needed to understand
the reciprocity.
Heterogenous structure and dynamics
within the cytoplasm: a charge issue?
Most cellular macromolecules carry a net negative
charge, with electrostatic repulsion to keep the diffusive
encounters strong enough for partner search but weak
enough to avoid large-scale clustering [32]. Cells
achieve electrical equilibrium in the cytoplasm by
regulating the production and transport of counterions
and osmolytes across the cell membrane. Mycobacterium
tuberculosis can adjust the surface charge and composition
of its proteome evolutionarily or throughout the cell
www.sciencedirect.com
cycle to adapt to various extreme ecological conditions,
including high or low temperatures, acidity, pressure,
and radiation [33]. Due to the unique electrostatic
environment within the cytoplasm, macromolecules
exhibit distinct behaviors and distributions according to
their surface charge [34,35]. Interactions between pro-
tein partners, including enzyme activities, rely not only
on translational diffusion for encounter but also on

Brownian surface rotational diffusion to explore binding
sites. If translational diffusion is too fast, surface diffu-
sion time is insufficient, while excessively slow lateral
diffusion diminishes metabolic efficiency. Beyond den-
sity regulation, affinities based on the surface charge of
macromolecular components may provide a basis for
local search during surface diffusion.

Recently, evidence has emerged that diffusion co-
efficients within the cytoplasm are heterogeneous in
space and time. In the cytoplasm of individual fission

yeast cells, the average short-term diffusivity of 40 nm
nanoparticles varies over tenfold between cells and over
a hundredfold within cells, independent of temperature,
cytoskeletal structure, and cell cycle [36]*.Similar
findings are reported for mammalian [37] and E. coli
cells [38]. Gradients in diffusion and density within the
cytoplasm appear to influence each other. Bacteria,
including E. coli, exhibit spatial gradients, with larger
macromolecules such as ribosomes and polysomes
enriched at the periphery, while the nucleoidda
networked chromatin-like structure in the centerdacts

as an entropic expeller of large macromolecules
(Figure 1b) [39]**. Charged cytoplasmic particles may
localize according to charge; highly positively-charged
particles tend to cluster around negatively charged ri-
bosomes, restricting their movement toward the
nucleoid [40]. Negatively-charged particles, with mini-
mal interaction with other cell components, show
prominent clustering with positively-charged entities.
Thus, the molecular charge can strongly affect locali-
zation and organization within cells relative to other
components’ charge and distribution [41]. When cells
are exposed to energy depletion or excessively acidic

environments, some cytoplasmic protein pools acquire a
net positive charge when exposed to low pH below their
isoelectric point, and the cytoplasm becomes glassy
through tangles between macromolecules [42,43]. pH
can also modulate the protonation state of histidine
residues within the DNA-binding domain of transcrip-
tion factors, thereby modulating their affinity for spe-
cific promoters and controlling gene expression for
numerous cellular behaviors [44].
Widespread and versatile condensation
The assembly of membrane-less biomolecular conden-
sates in the cytoplasm bridges nanoscale and mesoscale
dimensions, where nanometer-sized molecules organize
into higher-order structures with diameters ranging from
Current Opinion in Cell Biology 2025, 94:102507
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tens to thousands of nanometers. Cytoplasmic conden-
sates form in response to biochemical signals or ther-
modynamic changes, serving numerous physiological and
pathological roles [45]. The formation dynamics of these
transient and reversible condensates have typically been
detected for larger (w1 mm) structures due to the
diffraction limit of optical microscopy. However, a
comprehensive understanding of condensates’ proteo-

mic composition and their typical size scale has remained
elusive. Recently, filtration and size-exclusion experi-
ments on cytoplasmic extracts from Xenopus eggs
revealed that condensates are predominantly around the
100 nm scale [46]**. As cytoplasm becomes diluted,
condensate size decreases, but condensates do not fully
dissolve, suggesting they exhibit partially solid-like
properties with stable cores, likely formed through spe-
cific proteineprotein interactions, gelation, or binding
with RNAmolecules. Proteomics analyses predict that at
least 18 % of the cellular proteomedand over half of the

cytosolic proteome, excluding membrane-bound organ-
elles (MBP)dcould potentially be organized into con-
densates. This indicates that condensate assembly is
strongly influenced by the cytoplasm’s physical proper-
ties and signaling cues.

Cytoplasmic biomolecular condensates can form not only
in response to physiological conditions but also due to
changes in temperature [47], osmotic pressure [48], and
pH [49] leading to increased local concentrations of
specific proteins or altered surface properties of macro-

molecules. In some cases, the formation of reversible
condensates mediates signaling for stress adaptation.
Recently, a novel biophysical adaptation mechanism of
cells was discovered, wherein macromolecular conden-
sation buffers free water potential in the cytoplasm,
enabling rapid water availability under osmotic or tem-
perature stress (Figure 1c) [50]**. Water molecules can
form hydration shell around proteins that lowers the
entropy of other water molecules surrounding them,
reducing the total thermodynamic potential of water
[51]. In both yeast and human cells, condensate forma-
tion and dissolution either release or sequester free

water, effectively buffering the cytoplasm against ther-
mal or osmotic disturbances. Intrinsically disordered
proteins were found to play a crucial role in water orga-
nization within cells through phase separation. Molecu-
lar condensation has also been reported to mediate a heat
shock response that is conserved among three morpho-
logically near-identical budding yeast species, which are
adapted to different thermal environments and have
diverged by up to 100 million years [52]*. These species
exhibit a shared stress response, in which homologous
proteins lose solubility and, in the case of modified

poly(A)-binding protein 1 (Pab1), form condensates
slightly above their respective optimal growth tempera-
tures. Pab1 and the orthologs extracted from cells of
three thermal conditions are also condensed at slightly
higher temperatures than each cell’s typical growth
Current Opinion in Cell Biology 2025, 94:102507
temperature in vitro, indicating that Pab1’s temperature
sensitivity is encoded in its amino-acid sequence. Under
conditions where Pab1 failed to condense, the signaling
pathway for heat shock adaptation was not activated.
These findings show that specific biophysical cellular
responses, such as condensation, have been finely tuned
across extensive evolutionary timescales, enabling or-
ganisms to adapt to their environments.

Cellular metabolism fluidifies the cytoplasm
through switching of polysome structures
The cytoplasm can be fluidized through metabolic
processes, with the presence and abundance of ATP
identified as key determinants of this metabolism-
dependent fluidity [19,53]. Since approximately two-
thirds of cellular ATP is used in mRNA trans-
lationdparticularly for aminoacylation of tRNA and
GTP regeneration, translation has been pinpointed as a
major step sensitive to ATP availability. A recent theo-

retical study modeled the dynamics of ribosome
attachment and detachment on mRNA strands during
translation, investigating the effects of these switching
dynamics on cytoplasmic fluidity as influenced by ATP
availability [54]*. Due to the high copy number and
large molecular weight of ribosomes, this ribosomal
switching was found to significantly increase the diffu-
sivity of mesoscale tracers within the cytoplasm. This
effect appears to arise from repulsive, non-binding in-
teractions proportional to the size of these particles. On
the other hand, since ATPda biological inhibitor of

protein aggregation [55]dis depleted during aggrega-
tion [56,57], further investigation is required to deter-
mine whether metabolism or aggregation primarily
drives the mesoscale dynamics influenced by ATP.

Cells become rigid under ATP depletion or environ-
mental stress, but the immediate and constant changes
are not always favorable. Recently reported studies of
the behavior of crowded and active cytoplasmic con-
densates in synthetic condensates have shown that
excessive crowding accelerates the nucleation process of

condensates but greatly impedes their growth by colli-
sions with each other [58]*.Therefore, a precise un-
derstanding of the formation of the condensate is
required to process the stress responses. Under various
stress conditions, yeast cells exhibit a transient increase
in intermediate-scale diffusivity within the cytoplasm
(Figure 1d) [59]**. Stress-induced inhibition of trans-
lation leads to a rapid reduction in the fraction of ribo-
somes organized into polysomes, with free mRNA
subsequently released into the cytoplasm.These released
mRNAs condense into processing bodies or stress gran-

ules, and inhibition of condensate formation prevents the
transient fluidization of the cytoplasm. High concentra-
tions of polysomes or cytoplasmic free mRNA contribute
to enhanced elastic confinement of passive rheological
probes, whereas mRNA sequestration through conden-
sation alleviates cytoplasmicmesoscale confinement [60].
www.sciencedirect.com
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In human cells, similar changes in diffusion are observed
following the blockade of cytoplasmic RNA degradation
or condensate formation, suggesting that this response
may be conserved across species [59].
Perspectives
The dynamic mechanics of various structures within the
cytoplasm discussed in this study highlight the finely
regulated spatiotemporal control of cytoplasmic viscosity.
However, despite the development of sophisticated
methodologies tailored to specific cellular phenomena
and scales of interest, broad investigations into variations
across cell types and organisms remain limited. This

underscores the need for standardized measurements to
enable more comprehensive comparisons. Additionally,
we emphasize the need for the development of compu-
tational models that can more clearly elucidate the
various physical causal relationships underlying the
experimentally observed dynamic physical properties of
the cytoplasm and their subsequent effects. The rapid
advancement of desktop computing power, along with
the emergence of user-friendly, open-source simulation
software such as LAMMPS and GROMACS, has signifi-
cantly lowered the barrier to entry for researchers.
Conclusion
The cytoplasm is more structured than it appeared,
independently of cytoskeletal elements. This structure
is dynamic in space and time, and the shape and charge
of proteins and protein complexes, together with RNAs,

can lead to compartmentalization. At the same time,
cells have evolved into elegant ways of dealing with
changes in crowding, through the modulation of visc-
ogens or condensates. These mechanisms have perhaps
evolved to decrease heterogeneity within the cell. It
appears more and more the properties of the cytoplasm
are conserved across organisms. This may be so due to
evolutionary constraints in how the proteins interact in
terms of physics (steric and electrostatic interactions
mainly) to keep the cytoplasm fluid enough so that
biochemical reactions can take place fast enough.
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