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We discuss the short-time response of a multicellular spheroid to an external

pressure jump. Our experiments show that 5 min after the pressure jump, the

cell density increases in the centre of the spheroid but does not change

appreciably close to the surface of the spheroid. This result can be explained

if the cells are polarized which we show to be the case. Motivated by the

experimental results, we develop a theory for polarized spheroids where

the cell polarity is radial (except in a thin shell close to the spheroid surface).

The theory takes into account the dependence of cell division and apoptosis

rates on the local stress, the cell polarity and active stress generated by the

cells and the dependence of active stress on the local pressure. We find a

short-time increase of the cell density after a pressure jump that decays as

a power law from the spheroid centre, which is in reasonable agreement

with the experimental results. By comparing our theory to experiments,

we can estimate the isotropic compression modulus of the tissue.
1. Introduction
The regulation of tissue growth is generally analysed in biology in terms of

pathways and protein networks [1,2]. Recent work has, however, shown that

physical properties such as the local pressure or the local stiffness of the

tissue can also be important parameters in regulating tissue growth [3–5]. It

has, for example, been shown in the Drosophila embryo that certain genes are

mechano-sensitive in the sense that their expression is significantly modified

by changing the pressure or more generally the mechanical stress in the

tissue [6]. Several experiments also show that cell division and cell death

(apoptosis) can be coupled to the local stress in the tissue [7–9]. Such stress

dependence provides an important feedback mechanism for tissue growth,

which is essential in the determination of the final tissue morphology.

Along these lines, in our recent work, we have introduced the concept of homeo-

static pressure, which is the pressure of a tissue in a steady state where cell division

on average compensates apoptosis and cell density is constant [10]. We have,

furthermore, shown that there is also a reverse coupling of cell division and apop-

tosis on the mechanical properties of the tissue. If the rates of division and apoptosis

of individual cells depend on the stress acting on cells, the stress in the tissue can

relax. The tissue thus behaves as a visco-elastic material with elastic behaviour at

short times and a viscosity at times long compared with the cell division time k�1
d

[11]. Interestingly, this applies to both the isotropic and the anisotropic components

of the stress. While the relaxation of shear stresses is characteristic of conventional

visco-elastic fluids, the relaxation of isotropic stresses in tissues reflects an original

and unconventional material property [10,11].

Multicellular spheroids are cell aggregates with a size of the order of a frac-

tion of a millimetre that are grown from a few suspended cells. They are often

made of cancerous cells and can be considered as models of tumours both to

test drugs and for cell proliferation and invasion [12,13]. We have used

multicellular spheroids as model tissues to study the coupling between cell

division and mechanical properties. When a pressure is applied on the surface

of the spheroid using osmotic effects, the growth velocity of the spheroid

decreases and the finite steady-state radius reached after a few days becomes
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Figure 1. (a) Cross sections of spheroids of HT29 cells for zero external pressure (left) and pressure Pext ¼ 10 kPa (right) with DAPI-stained nuclei. (b) Average
internuclear distance as a function of radial distance r from the centre for spheroids of HT29 cells after growth during 4 days (circles). The internuclear distance as a
function of r is shown 5 min (squares) and 1 day (triangles) after a pressure jump DP ¼ 10 kPa. Average of n ¼ 3 spheroids for t ¼ 0 and t ¼ 5 min and n ¼ 4
for t ¼ 24 h; error bars indicate the standard deviation. (c) Radial cell elongation of HT29 cells shown as a function of distance r. Cell elongation is determined as
the ratio of cell distances in radial and circumferential direction; see appendix C. The line is a linear fit that reveals increased cell elongation towards the spheroid
centre. From the analysis of data for five different spheroids, we estimate an average slope of this line of (21.6+ 0.8) � 1023 mm21. The value r2 is the
correlation coefficient obtained from the linear fit. (Online version in colour.)
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smaller [7]. The experiments can be interpreted using a

simple physical description called core shell model. A spher-

oid of radius R is divided of into a core of radius R 2 e and an

external shell with a thickness e of the order of a few cell

sizes. In the core, the growth rate kg ¼ kd 2 ka is negative

and the cells mostly die. Here, kd and ka are, respectively,

the division and apoptosis rates. In the external shell, the

cell division rate is increased by an amount dks and the

growth rate kg þ dks is positive. The different behaviours in

the core and the external shell can be revealed by imaging

techniques using labels for apoptotic and dying cells [7,9].

It was shown that the core growth rate decreases and

becomes even more negative when an external pressure is

applied [7]. This implies that the homeostatic pressure of

the tissue in the core is negative and that in the homeostatic

state the tissue is thus under tension. Experiments suggest

that the excess division rate dks in the external shell is roughly

independent of pressure. The existence of two regions with

cell division dominating in the outer shell and cell death

dominating in the core implies an inward cell flow which

has been measured directly and which agrees well with the

prediction of the simple core shell model with two regions

of constant division and apoptosis rates. Note that in this sim-

plified model, the cell pressure is constant inside the core and

inside the shell.

In this paper, we present a systematic continuum

approach to investigate the mechanics and dynamics of a

spherical aggregate of cells that divide and undergo apopto-

sis. We first describe in §2 experiments that reveal that the

simple core shell model is insufficient to explain pressure pro-

files observed inside growing spheroids. We then introduce

in §3 a continuum model that can account for such effects.

In this model, we take into account the dependence of rates

of cell division and apoptosis on local stress. The effective

material properties of the tissue are captured by compres-

sional and shear elasticities on short times and viscosities

on long times. Important is the possibility of active stresses

that can be anisotropic if cells are polarized. Furthermore,

we allow for active anisotropic stresses to depend on local

pressure. We calculate radial flow and pressure profiles in a

steady state. In §4, we then discuss the short-time behaviour

of the system after a pressure increase. We show that cell
polarity and anisotropic active stresses are important to

account for observed pressure profiles. We conclude with a

discussion of the results in §5.
2. Mechanical response of a multicellular
spheroid to a pressure jump

We have performed perturbation experiments in which a grow-

ing spheroid is subject to a pressure jump (see appendix C).

The spheroid initially grows with no applied external

pressure. After a given time, a finite pressure is applied by

adding dextran which introduces an osmotic pressure dif-

ference between the spheroid and the external medium. The

average cell density is then determined as a function of

radius inside the spheroid. The results shown in figure 1a,b
reveal that only 5 min after the pressure increase, the

volume of the spheroid is decreased and that the cell density

increases by approximately 50% at the centre of the spheroid

while the density of cells closer to the outer shell does

not change. Such a radial profile of cell density implies the

existence of a pressure profile, with highest pressure in the

core, even higher than the increased pressure at the surface.

This observation is in disagreement with the simplified core

shell model where the pressure in the core is constant and

smaller than in the outer shell.

The analysis of cell shape inside the spheroid furthermore

reveals that cells are on average elongated radially inside the

core (figure 1c). In the outer shell, the cell elongation is either

weak or orthoradial without evidence of macroscopic tangential

order. These observations suggest that the cells inside the spher-

oid are polarized radially. These observations are also confirmed

when studying a different cell line called BC52. Again, we see a

significant increase of cell density inside the spheroid after a

pressure jump (figure 3a). Also, cells inside the spheroid tend

to be radially elongated (figure 3b). The idea that cells are polar-

ized radially is further supported by a study of centrosome

position relative to cell nucleus (see appendix C). Centrosome

position is an indicator of cell polarity. We find that centrosomes

inside spheroids of BC52 cells point typically radially inward

with respect to the cell nucleus (figure 3c).
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3. Dynamic equations for a growing
anisotropic tissue

We now present a continuum description of the tissue, taking

into account cell polarity and anisotropic active stresses. We

study spherically symmetric stress and velocity profiles that

emerge in spheroids where cells divide and undergo apoptosis.

In a steady state, corresponding to the long-time behaviour, the

flow and pressure profiles are calculated explicitly.

3.1. Hydrodynamic description
We consider a tissue in a continuum limit characterized by a cell

number density n which obeys the cell number balance equation

@tnþ @a(nva) ¼ (kd � ka)n: (3:1)

Here, va is the cell velocity, kd the cell division rate and ka the

apoptosis rate.

We distinguish the isotropic and the anisotropic parts of

the stress and the deformation rate tensors. The cell stress

sab and the symmetric part of the velocity gradient tensor

vab ¼ (1/2)(@avb þ @bva) are decomposed into a traceless

part and a part with trace

sab ¼ ~sab�Pdab (3:2)

and

vab ¼ ~vabþ
1

3
vggdab: (3:3)

Force balance can then be expressed as

@b ~sab� @aP ¼ 0: (3:4)

The tissue mechanical properties are characterized by constitu-

tive material relations that describe visco-elastic properties with

a tissue viscosity h, Maxwell relaxation time tt and a bulk cell

compressibility K [11]. The bulk compressibility is defined by

dP
dt
¼ K

n
dn
dt

, (3:5)

where dn/dt¼ @tn þ va@an is a convected time derivative.

From equation (3.1), it follows that n21dn/dt¼ 2vggþ kd 2

ka. The constitutive relations describing active tissue dynamics

then read

1þ tt
D

Dt

� �
( ~sab�zqab) ¼ 2h ~vab (3:6)

and

dP
dt
¼ �K(vgg � kd þ ka), (3:7)

where

D

Dt
~sab ¼

@ ~sab

@t
þ vg@g ~sabþvag ~sgbþvbg ~sag (3:8)

is a co-rotational convected time derivative [14,15] and vab¼

(1/2)(@avb 2 @bva) is the vorticity of the flow. Here z is the

magnitude of an active anisotropic tissue stress sact
ab ¼ zqab.

An active stress can exist as cells consume permanently chemi-

cal energy and contain contractile elements such as the cortex

and stress fibres. It may include both a collective component

associated with cell division discussed in [11] and a stress gen-

erated by individual cells resulting from the activity of the

cytoskeleton of the cells (see appendix A). For simplicity, we

consider in equation (3.6) the case where the active stress is

only owing to individual cell stress.
The cell polarity defines a vector pa which we normalize

as pgpg ¼ 1 without any loss of generality. The corresponding

tissue anisotropy is characterized by the traceless tensor

qab ¼ papb 2 (1/3)dab. The dependence of the rates of cell

division and apoptosis, kd and ka, on stress is described to

linear order by a stress dependence of the net growth rate

kd 2 ka as

kd � ka ≃ �h�1 (Ph � Pþ n~sab qab): (3:9)

Here, we have introduced the coefficient �h which has units of

viscosity and corresponds to an effective bulk viscosity. The

homeostatic pressure of an isotropic tissue is denoted by Ph

and we have taken into account the possible dependence of

the growth rate on the anisotropic part of the stress. The dimen-

sionless coefficient n characterizes the coupling of growth to

anisotropic stresses and their orientation with respect to

tissue polarity. Combining equation (3.7) and equation (3.9)

reveals that the isotropic stress shows a visco-elastic behaviour

and obeys

� 1þ tl
d

dt

� �
(P� Ph) ¼ �hvgg � nsabqab, (3:10)

with a longitudinal relaxation time tl ¼ �h=K.

In general, the active stress may not be constant but could

be regulated by the cell in response to external cues. Here, we

consider the case where the active stress depends on local

pressure P. To linear order we therefore write

z ¼ z0 þ z1(P� Ph): (3:11)

In addition to bulk equations, we have to specify bound-

ary conditions on the tissue surface. The force balance at the

surface can be expressed as

P� ~snn ¼ P ext þ 2gH, (3:12)

where ~snn ¼ na ~sabnb is the normal stress and na denotes a

surface normal vector. The tissue surface tension is denoted

by g and H is the local mean curvature of the surface.

We consider the outer shell of the spheroid as a thin layer

of thickness e, in which the net growth rate is dks. The cell

number balance at the interface then leads to an expression

for the normal cell velocity below the surface vn ¼ vana:

vn ¼ vs � v0, (3:13)

where vs is the normal surface velocity of the growing spher-

oid and v0 ¼ dksnse/n is the extra velocity generated in

the surface layer with ns denoting the cell density in the

surface layer.
3.2. Spherical geometry
We solve the dynamic equations for a cell spheroid of

spherical geometry with radius R and a radial cell polarity

field p ¼ er in spherical coordinates. The force balance in

spherical geometry reads

1

r2

@

@r
(r2 ~srr )� ~suu þ ~sff

r
¼ @rP: (3:14)

We first consider the long-time behaviour in which the tissue

becomes a viscous fluid and elastic stresses have relaxed. In

the viscous long time limit, the non-vanishing components

of the traceless stress read in spherical coordinates

~srr ¼
4h

3

@v
@r
� v

r

� �
þ 2

3
z (3:15)
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and

~suu ¼ ~sff ¼ �
2h

3

@v
@r
� v

r

� �
� 1

3
z: (3:16)

Here, v ¼ vr denotes the radial velocity and vu ¼ vf ¼ 0 by

symmetry. The pressure can be expressed as

P� Ph ¼ � �h
@v
@r
þ 2v

r

� �
þ n~srr : (3:17)

Using equation (3.15) together with the pressure dependence

of the active stress (3.11), we find

P� Ph ¼ a�1 4h

3
n� �h

� �
@v
@r
� 4h

3
nþ 2 �h

� �
v
r
þ 2

3
nz0

� �
,

(3:18)

where a ¼ 1 2 (2/3)nz1.
The force balance equation (3.14) then becomes an

equation for the flow profile

4h

3
(1� n)þ �h 1� 2

3
z1

� �� �
@2v
@r2

þ 4h

3
(2þ n)þ �h 2� 10

3
z1

� �� �
1

r
@v
@r

� 4h

3
(2þ n)þ �h 2þ 8

3
z1

� �� �
v
r2
þ 2

z0

r
¼ 0: (3:19)

This equation can be solved exactly using a power-law

ansatz (see appendix B). The velocity profile in steady state reads

v(r) ¼ v(R)
r
R

� �bþ1

þ z0

3 �hz1

r 1� r
R

� �b� �
: (3:20)

The boundary condition at the surface (3.13) then implies

v(R) ¼ dR/dt 2 v0. Here, the exponent b can be written as
014
0033
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[4hþ �h(3� 4z1)]2þ 24 �hz1[(4h=3)(1� n)þ �h (1� (2=3)z1)]

q
� 4h� �h(3� 4z1)

(8h=3)(1� n)þ 2 �h(1� (2=3)z1)
: (3:21)
Using equation (3.18) together with equation (3.20), the

pressure profile can be expressed as

P(r)� Ph ¼ �
z0

z1

þ 1

a

v0 � (dR=dt)
R

þ z0

3 �hz1

� �

� (bþ 3) �h� 4h

3
nb

� �
r
R

� �b
: (3:22)

The exponent b vanishes for z1 ¼ 0. This implies that in the

case where the active stress becomes pressure independent,

the velocity profile becomes linear and the pressure is con-

stant. Active anisotropic stresses that depend on local

pressure as described by z1 lead to power-law profiles of vel-

ocity and pressure.

The pressure boundary condition Pext ¼ �~srr (R)þ P(R)�
2g=R implies

Pext � Ph þ
2g

R
¼ 1

a

4h

3
b(1� n)þ �h(bþ 3) 1� 2

3
z1

� �� �

� v0 � (dR=dt)
R

þ z0

3 �hz1

� �
� z0

z1

: (3:23)

In the long time limit, we can determine the density change dn ¼

n 2 nh from the pressure profile as dn=nh ≃ K�1(P� Ph),

where nh is the density at pressure Ph. The density profile is

thus given by

dn
nh

≃ � z0

Kz1

þ 1

K
(Pext � Ph þ z0=z1 þ 2g=R)((bþ 3) �h� 4hnb=3)

(bþ 3) �h(1� 2z1=3)þ 4h(1� nb)=3

r
R

� �b
,

(3:24)

which predicts a power law as a function of distance from the

spheroid centre.

In a steady state, the growth rate dR/dt ¼ 0 and equation

(3.23) provides a relation between the external pressure and

the steady-state radius R1 of the spheroid. Equation (3.23)

also provides a dynamic equation for the spheroid radius in

the limit where the radius changes slowly enough that the

long time limit can be used inside the spheroid. The spheroid
radius then changes as

R(t) ¼ (R0 � R1)e�t=t þ R1, (3:25)

where R0 is the initial radius. The relaxation time of the

spheroid radius can be written as

t ¼ heff

Pext � Ph � Pa
, (3:26)

where

heff ¼ a�1 4h

3
b(1� n)þ �h(bþ 3) 1� 2

3
z1

� �� �
(3:27)

is an effective viscosity and

Pa ¼
z0

z1

1þ heff

3 �h

� �
(3:28)

an effective active pressure. The steady-state radius is then

given by

R1 ¼
v0heff � 2g

Pext � Ph � Pa
: (3:29)

A stable steady-state radius is obtained if Pext . Ph þ Pa and

v0heff . 2g. In this case t . 0, and the system relaxes to a

finite steady-state radius R1. Note that both the relaxation

time and the steady-state radius diverge when the external

pressure Pext matches the sum of the homeostatic and the

effective active pressure Ph þ Pa. Thus, in the presence of

active behaviour, the divergence of the steady-state radius

does not provide a direct measure of the homeostatic

pressure. For Pext , Ph þ Pa and v0heff , 2g, an unstable

steady state exists. This unstable steady state corresponds to

a generalization of the critical nucleus for tumour growth dis-

cussed in Basan et al. [10] in the presence of active stresses.
4. Visco-elastic response of a spherical tissue
The experiments discussed in §2 reveal that the cell density

inside the spheroid changes significantly within only 5 min

after a sudden increase in external pressure Pext. To discuss

http://rsfs.royalsocietypublishing.org/


0.2 0.4 0.6 0.8 1.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r/R

dn
/n

Figure 2. Relative cell density increase dn/n ¼ (n0 2 n(5 min))/n0 of HT29
cells 5 min after an external pressure jump as a function of radial distance r
normalized by spheroid radius R (circles). Here n0(r) denotes the cell density
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given by equation (4.13) (solid line). Fit parameters a ≃ 0:12 + 0:05,
be ≃ �0:6+0:2 and fit quality x2 ¼ 0.73. (Online version in colour.)
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the response of a spheroid to such a pressure increase, we

study the mechanical short-time response of a steady state

discussed in §3.

We thus calculate the time-dependent change of vel-

ocity, pressure and stress profiles as well as the response

of the spheroid radius to a sudden change in pressure.

We write

va(t) ¼ v(0)
a þ dva(t), (4:1)

P(t) ¼ P(0) þ dP(t), (4:2)

~sab ¼ ~s(0)
ab þ d ~sab, (4:3)

Pext ¼ P(0)
ext þ DP u(t) (4:4)

and R ¼ R(0) þ dR(t), (4:5)

where v0 and P0 are the steady-state solutions discussed in

§3 with radius R(0) ¼ R1 and for external pressure P0
ext. The

Heaviside function u(t) captures the external pressure jump

DP at time t ¼ 0.

We solve the dynamic equations by Laplace transformation

dv(r, s) ¼
Ð1

0 dtdv(r, t)e�st and dP(r, s) ¼
Ð1

0 dtdP(r, t)e�st: The

constitutive relations (3.6) and (3.10) then become

d~sab ¼
2h

1þ stt
d ~vabþz1qabdP (4:6)

and

dP ¼ � �h

1þ stl
@adva �

n

1þ stl
d~sab qab, (4:7)

where we have neglected the convective nonlinearities in

equation (3.6) and used the initial conditions dva(t ¼ 0)¼ 0,

dP(t ¼ 0)¼ 0 and d~sab ¼ 0. Using the force balance equation

@d~sab�@adP ¼ 0, we have to solve the same equations

in spherical geometry as in the steady state, however with

z0 ¼ 0 and renormalized coefficients ~h ¼ h=(1þ stt),
~z ¼ �h=(1þ stl) and ~n ¼ n=(1þ stl).

At the boundary, the interface velocity is vs ¼ ddR/dt and

vn ¼ v(0)(R þ dR(t)) þ dv(R þ dR). To linear order in dv and

dR, we then have

dv(0)(R(0))

dr
dRþ dv(R(0)) ¼ ddR

dt
: (4:8)

Similarly, from ~s(0)
rr þ d ~srr � P(0) � dP ¼ �P(0)

ext � DP we find

DP ¼ �d ~s(0)
rr

dr
dR� d~srr (R(0))þ dP(R(0)): (4:9)

The solution to the force balance equation is then

dv(r) ¼ A
r

R0

� �beþ1

, (4:10)

where be is given by equation (3.21), however with par-

ameters h, �h and n replaced by the renormalized

coefficients ~h, ~z and ~n, respectively, and therefore depending

on s. In the large s limit (short times), we find

A ≃ �DPR0

K
1

(be þ 3)(1� (2=3)z1)þ (4G=3K)be

� �
(4:11)

and

be ≃
2z1

1� (2=3)z1 þ (4G=3K)
: (4:12)

Here, K ¼ �h=tl and G ¼ h/tt are the bulk and shear moduli,

respectively. The tissue compression can be obtained from

the isotropic deformation du ¼ dv/s and is given by

dn/n ¼ 2(1/r2)d/dr(r2du). Using the short-time solution
equations (4.10)–(4.12), we then find for the cell compression

profile

dn
n
¼ DP(3þ be)

3K
r

R0

� �be

: (4:13)

Figure 2 shows a fit with the theory of the observed relative

cell density increase of HT29 cells 5 min after a pressure

jump. The experiment corresponds to a short-time response

of the tissue (figure 1a). From the fit, we can estimate

be ≃ �0:6 + 0:2 and a ; DP(3þ be)=3K ≃ 0:12 + 0:05. From

this, we deduce z1 ≃ �0:4 and K ≃ (4 + 2)� 104 Pa: In the

estimate of z1, we have used the fact that the compression mod-

ulus is larger than the shear modulus K� G. A fit to the cell

density data of BC52 cells 1 day after a pressure jump is

shown in figure 3a. Fit parameter values for this case are

be ≃ �0:35 + 0:25 and a ≃ 0:27 + 0:07. From this fit, we

infer z1 ≃ �0:2 and K ≃ (1:6 + 0:5)� 104 Pa. In both cases,

the theory can account for the observed density profile.

Because of the noise in the experimental data, the parameter

values estimated by the fit show a sizeable uncertainty. Both

fits, however, lead to consistent estimates.
5. Concluding remarks
Cell spheroids represent a very simple and fundamental model

for the organization of multicellular systems. Because of the

existence of a surface tension, their shape is spherical. However,

the simplest picture of an isotropic material in the bulk of

the spheroid is insufficient to account for the observed

behaviours. In the case of isotropic material properties, the

pressure in the core is constant (see equation (3.22)). This

would correspond to a constant cell density inside the spheroid.

Experiments in which a pressure jump is applied to a grow-

ing spheroid reveal an interesting mechanical response. This

response occurs at a time scale shorter than 5 min which is

short compared with the cell division time. Deep inside the

spheroid, the cell density increases significantly with less

http://rsfs.royalsocietypublishing.org/
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increase further outside. This clearly leaves out the possibility of

biochemical signalling as a cause, as this would be maximum

outside and minimum in the centre. For this deformation to

develop in the centre of the spheroid, it is necessary that inter-

sticial fluid leaves the cells. This suggests that a two-component

picture of the tissue dynamics should be used in the descrip-

tion of the spheroid [16]. However, the mere fact that the

time required for evacuating the intersticial fluid is smaller

than 5 min, implies that the permeation length introduced in

[16] is large compared with the spheroid radius. The

permeation length characterizes the length scale beyond

which a two-component description becomes necessary

because stresses associated with the relative movement of

cells and extracellular fluid become relevant. We therefore

can ignore permeation and use here a one-component

description of the tissue.

The fact that cells increase their density inside the spher-

oid implies that there exists, already after 5 min subsequent to

an external pressure jump, a pressure profile inside the spher-

oid with highest pressure at the centre. This finding cannot be

explained by isotropic material properties and we have to

invoke ordered cell polarity in the tissue which introduces

tissue anisotropies. We indeed see in experiments that the

cells organize their polarity in the core along the radial direc-

tion, while it may be tangential to the surface in the outer

layers. This tissue anisotropy introduces anisotropic active

stresses. When these anisotropic stresses depend on local

pressure, stress profiles result that can account for the

observed density profiles at short times. The observed nega-

tive sign of the exponent be implies according to equation

(4.12) that z1 is negative: cells tend to overreact to an external

pressure. They add up contractile stress in the radial direction

in response to external pressure. Passive anisotropic stresses

could also give a reasonable account of experimental data

[17]. Probably both effects contribute to the experimental be-

haviour. We also cannot rule out a heterogeneous response of

cells to stress due to, for example, position-dependent cell

fates. Furthermore, our analysis allows us to provide a

measure of the short-term tissue isotropic compressional

modulus K. Shear modulus is measured conventionally but
compressional modulus is hard to access. This is to our

knowledge the first such measurement.

In the long time limit, the spheroid can reach a steady

state in which cells die inside and divide near the surface.

Therefore, there exists an inward flow profile in steady

state. In this limit, elastic stresses can relax and the material

can be regarded as a viscous fluid. Even in that limit we

find a non-trivial power-law dependence of cell density as

a function of distance from the centre. On short times, elastic

properties become important and the power law characteriz-

ing cell density changes. Here, we have studied the steady

state as well as the short-time response of a steady state to

a pressure jump. Both limits are relevant to the experiments

on spheroids and together provide a coherent physical

picture of dynamic cell spheroids.
Appendix A
The constitutive equation for the anisotropic tissue stress

can be obtained as described in Ranft et al. [11]. Here we

generalize this derivation to the case where the active stress

contains contributions from individual cell stress and from

stress due to cell division and apoptosis events. The tissue

shear stress can be expressed as a sum of an elastic and an

active component

~sab ¼ 2G ~uabþ~sa
ab , (A 1)

where G is the cell shear modulus and ~sa
ab denotes the total

active stress. The total active stress can be expressed as a sum

of two contributions

~sa
ab ¼ zqab þ

ð
dt0~kab: (A 2)

Here, zqab is the anisotropic stress generated by the cytoske-

leton of individual cells that are polarized as described by the

anisotropy qab. The second term describes active stress corre-

sponding to force dipoles that are introduced by cell division

and apoptosis events at a rate ~kab.
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The active stress rate due to tissue growth ~kab is biased by

local stress and also by the local cell polarity. To linear order,

we can write

~kab ¼ �
1

tt
~sab þ

z

ta
~qab , (A 3)

where we introduced the stress relaxation time tt and a

characteristic time ta describing the relative role of cell

stress and of active stress owing to growth. The tissue stress

then obeys

1þ tt
D

Dt

� �
( ~sab � zqab) ¼ 2h ~vabþ

tt

ta
� 1

� �
zqab, (A 4)

with h ¼ Gtt. In the simple case ta ¼ tt, we find equation

(3.6). Note that our calculations do not change when ta differs

from tt. In the long time limit, we have to replace z by

(tt/ta)z. The short time limit is unchanged.
Appendix B
Equation (3.19) for the radial velocity profile is of the form

r2v00 þ arv0 � bvþ cr ¼ 0, (B 1)

where primes denote derivatives with respect to r and

a ¼ (4h=3)(2þ n)þ �h(2� (10=3)z1)

(4h=3)(1� n)þ �h(1� (2=3)z1)
, (B 2)

b ¼ (4h=3)(2þ n)þ �h(2þ (8=3)z1)

(4h=3)(1� n)þ �h(1� (2=3)z1)
(B 3)

and c ¼ 2z0

(4h=3)(1� n)þ �h(1� (2=3)z1)
: (B 4)

This equation can be solved by first obtaining the general sol-

ution vh(r) to the homogeneous problem, equation (B 1) with

c ¼ 0. This solution is then combined with the special

inhomogeneous solution v ¼ [c/(b 2 a)]r to equation (B 1).

For c ¼ 0, solutions to equation (B 1) are of the form v0 ¼

Ar1þb, where the exponent obeys b2 þ (1 þ a)b þ a 2 b ¼ 0

which is solved by

b1,2 ¼
�(aþ 1) +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(aþ 1)2 þ 4(b� a)

q
2

, (B 5)

with b1 . b2. The general solution to the velocity profile is
thus given by

v(r) ¼ c
b� a

rþ A1rb1þ1 þ A2rb2þ1: (B 6)

The larger exponent b1 governs the velocity profile for dis-

tances larger than a cut-off length of the order of the cell

size. This can be shown for b2 , 0 by a detailed calculation,

taking into account the cell number conservation law in the

centre. Using

b� a
c
¼ 3 �hz1

z0

, (B 7)

and taking into account the boundary condition (3.13), we

find the solution given in equation (3.20) with b ¼ b1. We

can then express the exponent b defined in equation (B 5)

as equation (3.21). Note that b ¼ 0 for z1 ¼ 0.
Appendix C. Experimental methods
Experiments were performed with different cell lines (HT29,

BC52) in a culture medium [9]. As spheroids are dense tissues

and therefore hard to image, we performed cryosections and

imaged the equatorial plane of the spheroid using confocal

microscopy. This ensures a constant thickness of the optical

cut which is an improvement as compared with earlier work

[8]. The equatorial plane was identified by measuring the

diameter of the spheroid before cutting and selecting the cuts

with diameter closest to the spheroid diameter. We used

DAPI staining of nuclei to determine typical distances between

nuclei and used spatial intensity–intensity autocorrelation

functions to determine cell density and cell elongation.

The autocorrelation method was implemented as follows:

in the DAPI-stained image of a spheroid cross section, we

randomly chose the centres of circular regions of interest con-

taining of the order of 10 cells (figure 4a). The number N of

regions was chosen such that typically regions do not over-

lap. For the analysis of a given region of interest, the image

was cropped outside the region. The spatial power spectral

density of this cropped image was obtained by fast Fourier

transformation using Matlab. The spatial correlation function

was obtained by inverse Fourier transform of this spatial

power spectral density. We obtained the spatial

http://rsfs.royalsocietypublishing.org/
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autocorrelation function g(d ), where d is the radial distance

within a region of interest by averaging over all angles.

In addition to the peak at d ¼ 0, the autocorrelation function

g(d) has a first peak at finite d, the typical distance between

nuclei (figure 4b). Each region of interest with a centre at

radial distance r in the spheroid provides one data point on

the internuclear distance as a function of r (figure 4c). We distri-

bute these points in bins with a width corresponding to the

diameter of the regions of interest to determine average internuc-

lear distance. The cell density is estimated as the inverse cube of

the average internuclear distance. Error bars in figure 1b show

the variance of data points obtained from five spheroids. The

estimated cell size before the pressure increase is consistent

with the value obtained using the volume of a cell population

measured with a Coulter counter.

We used the same method to study the anisotropy of

the cell shape before the application of the pressure jump.

Instead of using circular regions of interest we used two
perpendicular rectangular regions of interest, one in the

radial direction, one in the orthoradial direction. From the

autocorrelation functions along the long axis of the rectangu-

lar regions (figure 4a), we determined the characteristic

distance between nuclei in radial and tangential directions.

The radial cell elongation is defined as the internuclear dis-

tance in the radial direction divided by the internuclear

distance in the circumferential direction (figures 1c and 3b).

The cell polarity can be determined from the position of the

centrosome relative to the nucleus. We used immunofluores-

cence staining of percentrin to determine the centrosome

position relative to the position of DAPI-stained nuclei. We

characterize the polarity pointing from the nucleus to the centro-

some by a unit vector p. The angle of the vector p with respect to

the inward radial direction is shown as a function of radial dis-

tance in figure 3c. This result provides additional support for cell

polarity being radially oriented in the core of the spheroid and

not polarized or even tangentially polarized at the surface.
033
References
1. Wolpert L. 2005 Principles of development, 2nd edn.
Oxford, UK: Oxford University Press.

2. Weinberg RA. 2006 The biology of cancer. New York,
NY: Garland Science.

3. Shraiman BI. 2005 Mechanical feedback as a
possible regulator of tissue growth. Proc. Natl Acad.
Sci. USA 102, 3318 – 3323. (doi:10.1073/pnas.
0404782102)

4. Mammoto T, Ingber DE. 2010 Mechanical control of
tissue and organ development. Development 137,
1407 – 1420. (doi:10.1242/dev.024166)

5. Butcher DT, Alliston T, Weaver VM. 2009 A tense
situation: forcing tumour progression. Nat. Rev.
Cancer 9, 108 – 122. (doi:10.1038/nrc2544)

6. Farge E. 2003 Mechanical induction of twist in the
Drosophila foregut/stomodeal primordium. Curr.
Biol. 13, 1365 – 1377. (doi:10.1016/S0960-
9822(03)00576-1)

7. Montel F et al. 2011 Stress clamp experiments
on multicellular tumor spheroids. Phys. Rev.
Lett. 107, 188102. (doi:10.1103/PhysRevLett.
107.188102)

8. Montel F, Delarue M, Elgeti J, Vignjevic D,
Cappello G, Prost J. 2012 Isotropic stress reduces
cell proliferation in tumor spheroids. New
J. Phys. 14, 055008. (doi:10.1088/1367-2630/14/
5/055008)

9. Delarue M, Montel F, Caen O, Elgeti J, Siaugue J-M,
Vignjevic D, Prost J, Joanny J-F, Cappello G. 2013
Mechanical control of cell flow in multicellular
spheroids. Phys. Rev. Lett. 110, 138103. (doi:10.
1103/PhysRevLett.110.138103)

10. Basan M, Risler T, Joanny J-F, Sastre-Garau X, Prost J.
2009 Homeostatic competition drives tumor growth
and metastasis nucleation. HFSP J. 3, 265 – 272.
(doi:10.2976/1.3086732)

11. Ranft J, Basan M, Elgeti J, Joanny J-F, Prost J, Jülicher
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mécaniques sur le développement du cancer. Thèse
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