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Tissue homeostasis: A tensile state
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Abstract – Mechanics play a significant role during tissue development. One of the key char-
acteristics that underlies this mechanical role is the homeostatic pressure, which is the pressure
stalling growth. In this work, we explore the possibility of a negative bulk homeostatic pressure
by means of a mesoscale simulation approach and experimental data of several cell lines. We show
how different cell properties change the bulk homeostatic pressure, which could explain the benefit
of some observed morphological changes during cancer progression. Furthermore, we study the
dependence of growth on pressure and estimate the bulk homeostatic pressure of five cell lines.
Four out of five result in a bulk homeostatic pressure in the order of minus one or two kPa.

Copyright c⃝ EPLA, 2015

Introduction. – While growth of eukaryotic cells is
mainly determined by signaling and nutrition, the notion
that mechanics also play a role has been advancing con-
tinuously over the years. Ingber and colleagues noted
already thirty years ago that tensile stresses can regu-
late tissue architecture [1]. Today, mechanotransduction
and mechanobiology are important fields of research [2,3].
From a physics point of view, a cell has to increase its
volume in order to accommodate for new cell material.
In terms of thermodynamics, pressure is the conjugated
variable of volume. Therefore, it seems natural to investi-
gate the pressure cells can develop as well as its feedback
onto growth. Mechanical feedback on growth has been
implemented in many different ways [4,5]. One intuitive
approach is to expand the growth rate in powers of the
pressure around the zero growth rate pressure —the home-
ostatic pressure [6]. In this theory, the homeostatic state
of a tissue is characterized by the balance of cell division
and cell death (apoptosis) rate, which reflects a dynamic
steady state with respect to the number of cells. The tis-
sue maintains a well-defined pressure, called homeostatic
pressure PH , and the overall growth rate k around the
homeostatic state depends on the difference between PH

and the externally imposed pressure P i:

k = κ(PH − P i). (1)

The concept is best understood with a simple gedankenex-
periment : a tissue is confined in a small chamber, where

one of the walls acts as a movable piston connected to a
spring. Cells are placed inside the chamber and the tis-
sue grows, compressing the spring. Eventually, the force
exerted by the piston on the cells is large enough to slow
down division, yielding a steady state, where apoptosis
balances cell division.

It is a challenging task to measure this homeostatic pres-
sure experimentally. In some attempts, researchers em-
bedded cells in an elastic shell that can be deformed by
the tissue, but the tissue never reached a steady state and
therefore a well-defined pressure [7]. Another approach
exerted a compressive stress directly onto multicellular
spheroids [5,8,9], which resulted in a slow down in growth.

A detailed analysis showed that spheroid growth is
highly dominated by surface effects in the sense that cell
division occurs mainly at the first 2–3 cell layers of the
free surface. Although some physiological gradients of nu-
trients or growth factors exist [10], this surface growth
effect is also seen in simulations [9], where we can de-
couple the mechanics from the biochemistry. A possible
intuitive explanation by simple mechanics would be as fol-
lows. A growing cell increases its volume, creating a strain
dipole. The energy required to insert such a dipole at the
surface of the tissue is smaller than in the bulk as in the
former case part of the necessary strain field is cut away.
Therefore, division is favored at free surfaces.

The net growth in the bulk of the aforementioned tissue
experiments was determined to be negative. This leads to
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a dynamic steady state, where the apoptotic core is bal-
anced by an influx of cells from the surface [11]. Could
we thus deduce the homeostatic pressure to be negative?
Does a negative homeostatic pressure even make sense?
On the one hand, many working in the field of tissue me-
chanics consider cells to be in a tensile state and, therefore,
could indeed expect the homeostatic pressure to be nega-
tive. On the other hand, from a physical point of view, a
material under tension seems to contradict expansion and
only yield unstable states.

We used the same mesoscopic simulation model as
in [8,9,12] to perform a gedankenexperiment of tissue
growth in a box with a piston (see fig. 1 and Supplemen-
tary Movie S1 neghp.avi), demonstrating the concept
and stability of a negative homeostatic pressure. Initially,
cells are seeded at the bottom of the box, adhere to the
wall and start to grow upwards due to the free surface.
The piston, acting as a sticky surface, however, cuts away
this free surface and leaves only the on-average apoptotic
bulk. The resulting decrease in cell number and the ad-
hesion forces between cells pull down the piston. Stress
in the bulk becomes tensile, and the growth rate increases
until a different steady state (under tension) is reached.

Methods. – In order to study the behavior of grow-
ing tissues, we use the same mesoscopic simulation model
as in [8,9,12]. Briefly, each cell consists of two point par-
ticles that repel each other with a growth force F g

ij =
B/(rij + r0)2r̂ij , where B is the growth force strength,
rij the distance between the particles i and j, r0 some
constant and r̂ij the unit displacement between i and j.
Upon exceeding a certain critical distance, the cell divides.
Apoptosis is introduced as a constant probability for each
cell to disappear. These two are the only active com-
ponents in the simulations. The volume exclusion force
F v

ij = f0
(
R5

pp/r5
ij − 1

)
r̂ij ensures impenetrability of the

cells with the cell-cell potential coefficient f0. All interac-
tions are short ranged with a cut-off radius Rpp, beyond
which all interactions are set to zero. Cell adhesion is
represented by a simple constant force F a

ij = −f1r̂ij and
tuned by the adhesion strength f1.

To account for dissipation and random fluctuations, we
use a dissipative particle dynamics (DPD)-type thermo-
stat. It consists of a random force F r

ij = σωR(rij)ξij r̂ij

with σ, the strength of this force, ξij = ξji a symmetric
Gaussian random variable with zero mean and unit vari-
ance and a weight function ωR(rij) and a dissipative force
F d

ij = −γωD(rij)(vij · r̂ij)r̂ij with γ the strength of this
force, vij = vj − vi the relative velocity between i and
j and a weight function ωD(rij). Unless explicitly men-
tioned, we use the same standard parameter set and nota-
tion as in [8,9], i.e. all quantities denoted with a ∗ are in
terms of the standard parameter set (e.g. B∗ = B/Bref).

To model different compressibilities, the volume exclu-
sion force prefactor f∗

0 and the adhesion force prefactor f∗
1

are varied simultaneously, while f∗
0 /f∗

1 is kept constant.
Thus, the minimum of the potential between particles

|Fz| [a.u.]
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Fig. 1: (Color online) Visualization of the concept of a nega-
tive homeostatic pressure. Sticky walls are modeled by parti-
cles similar to normal cells, except they are fixed with a strong
harmonic potential (purple particles). The piston at the top is,
furthermore, subjected to a weak harmonic potential depicted
by the spring. Snapshots at different times t are shown for
the same simulation with (left) and without (right) piston (see
Supplementary Movie S1 neghp.avi). Cells are color coded ac-
cording to their age (red corresponds to recently divided cells,
while blue corresponds to cells that did not divide for a certain
amount of time). Note that most cell divisions occur at free
surfaces. The sticky piston cuts away this free surface and is
pulled down due to the negative bulk homeostatic pressure.

is fixed, whereas the second derivative of the potential
around this minimum is varied, leading to softer/stiffer
tissues. The compressibility K is defined as 1/f∗

0 .
In order to measure the bulk dependences on pressure,

we implement a constant pressure ensemble as detailed
in [13]. The described method imposes a defined pressure
on a system with full periodic boundaries. This pressure is
maintained through a periodic rescaling of the box volume
by a factor

χ = 1 − βT
∆t

tP
(P − P i), (2)

where βT is the isothermal compressibility, ∆t the sim-
ulation time step, tp a relaxation time constant and P i

the pressure we impose on the system (in simulations:
βT /tP = 1 d−1kPa−1 with a time step of ∆t = 10−3 d).
Furthermore, the center of mass of all cells is rescaled by
3
√

χ. There are in general no constraints on the imposed
pressure, which makes it possible to simulate systems un-
der tension (P i < 0) as well. Following [14], the current
pressure P inside the full periodic simulation box is cal-
culated through the evaluation of the virial stress

σαβ = − 1
V

⎡

⎣
∑

i

miv
i
αvi

β +
∑

i,j

rij
α f ij

β

⎤

⎦, (3)

where
∑

i is the sum over all particles, vi
α the α-th com-

ponent of the velocity of particle i,
∑

i,j the sum over all
pair interactions that act on i, rij

α = ri
α − rj

α the α-th
component of the distance vector between i and j and f ij

β
the β-th component of the force acting on particle i. We
define the mean pressure as P = −1/3Trσαβ . Without
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rescaling, the system reaches its homeostatic state, where
the measured pressure equals the homeostatic pressure.

Experimentally, pressure is applied to spheroids by
adding a biocompatible polymer, Dextran, to the cul-
ture medium. Dextran does not penetrate the spheroid,
and rather exerts an osmotic stress onto the whole struc-
ture. This method, however, can only apply compressive
stresses onto the surface of a growing spheroid. The effect
of Dextran can be mimicked in the simulations by a purely
repulsive van der Waals gas, which then applies the stress
on the system [8,9,11]. This method, however, requires a
complete tissue spheroid placed in a simulation box with
hard walls. The pressure applied on the spheroid due to
the additional gas particles is then calculated from the mo-
mentum transfer onto the walls. A direct comparison of
the results of the constant pressure ensemble and the van
der Waals gas shows a perfect agreement. However, the
constant pressure ensemble is computationally much more
efficient (due to its smaller system size) and additionally
it can also impose tensile stresses onto the system. There-
fore, all bulk-growth-rate–related results shown in this pa-
per were obtained with this method.

The experimental data consists of 5 distinct cell lines of
immortalized cells. The CT26 and HT29 cell lines both
come from colon carcinoma (HT29 originate from a human
tumor and have a more epithelial phenotype, while CT26
originate from a murine tumor and have a mesenchymal
phenotype). The AB6 cell line comes from the immor-
talization of murine spontaneous sarcoma and also has a
mesenchymal phenotype. The FHI cell line, coming from
Schwannoma, and the BC52 cell line, coming from human
breast cancer, both have an epithelial phenotype.

Results. – With the gedankenexperiment described
above, we have seen how a negative homeostatic pressure
could still form a macroscopic tissue and develop a tensile
state (see fig. 1). However, to quantify the stress rep-
sonse of the tissue this setup might still contain boundary
effects. We thus utilize the constant pressure ensem-
ble to better understand the response of growing tissues
to mechanical stresses and describe experimental data in
more detail. Starting from the standard parameter set
as defined in [8,9], we investigated the bulk homeostatic
pressure dependence on different model parameters. We
focused on the growth force strength B∗, the adhesion
strength f∗

1 and the cell stiffness K, since these parame-
ters have a straightforward analogon in real tissues and can
in principle be measured [15–23]. The results are shown
in fig. 2 and display a linear relationship between P b

H and
f∗
1 and B∗, respectively. The critical adhesion strength

f∗
c (B∗) characterizes the transition from a negative to a

positive P b
H . Finally, we find P b

H to increase with the com-
pressibility K (see fig. 2(b)). This increase is somewhat
nonlinear and the slope changes with B∗.

A negative P b
H naturally leads to a stable steady state

for a freely growing tissue. Assuming a similar two-rate
growth model as in [8], the time evolution of the radius
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Fig. 2: (Color online) Bulk homoestatic pressure dependence
on model parameters. (a) Bulk homeostatic pressure P b

H in
simulation units as a function of adhesion strength f∗

1 and
growth force B∗. Solid lines represent linear fits. (b) Bulk
homeostatic pressure P b

H as a function of cell compressibility K.
Solid lines represent linear fits. All data were measured in full
periodic boundaries. Error bars represent standard deviations.

R of such a tissue spheroid reads

∂tR
3 = kbR

3 + 3λδksR
2, (4)

where kb is the growth rate in the bulk and δks > 0 is the
growth rate increment in a small region λ at the surface. A
stable steady state (∂tR3 = 0) can only arise if kb < 0 and
δks > −kb. An unstable steady state exists for kb > 0 and
δks < −kb. Plugging eq. (1) into eq. (4) leads to a steady
state radius Rss ∝ 1/P b

H , which can be rewritten to Rss ∝
1/(f∗

1 − f∗
c ) using our earlier simulation results, diverging

at the same critical adhesion strength. This dependence is
perfectly reproduced in the simulations as shown in fig. 3.

As a next step, we analyzed the bulk growth rate kb for
a wide range of imposed pressures P i. Although experi-
mentally not yet accessible, we simulated not only tissues
under compression (P i > 0) but also tissues under tension
(P i < 0). Our studies reveal a distinct nonlinearity of the
bulk growth rate kb with the imposed pressure P i.

In fig. 4 the bulk growth rate is displayed as a func-
tion of the imposed pressure P i for different parameter
sets. The general behavior separates into three distinct
regimes. Equation (1) holds in the domain close to the
homeostatic pressure (with slope κ), which extends a bit
further towards cell compression. Under stronger tension,
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Fig. 4: (Color online) Growth rate under compression and ten-
sion. (a) Bulk growth rate kb as a function of the imposed
pressure P i for several parameter sets. (b) Same as in (a) but
shifted by the bulk homeostatic pressure P b

H , which collapses
all curves onto one. Note the two linear regimes.

another linear regime with slope κt is observed. The
slopes κ are very similar (κ ≈ (−0.60 ± 0.07) · 10−3)
for all tested parameter sets, while κt seems to change
(κt ≈ (−8.0 ± 1.9) · 10−3), however, not statistically sig-
nificant. The third region reveals an asymptotic behavior,
where cell division is mostly suppressed due to the imposed
pressure and therefore the growth rate kb approaches the
fixed apoptosis rate. All curves fall on top of each other,
when we shift them by their bulk homeostatic pressure.

Table 1: Bulk growth rate kb of several different cell lines with
and without pressure. The pressure PDex exerted by the added
Dextran is 10 kPa for HT29 and CT26 and 5 kPa otherwise.
Furthermore, the bulk homeostatic pressure estimation via lin-
ear interpolation is shown. Growth rates are taken from [8,24].

kb(0) (d−1) kb(PDex) (d−1) P b
H (kPa)

AB6 −0.02(1) −0.04(2) −5(7)
BC52 −0.07(1) −0.15(1) −4(1)
FHI −0.59(5) −1.08(37) −6(5)
HT29 −0.0020(1) −0.13(12) −0.16(15)
CT26 −0.24(1) −0.49(10) −14(4)
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Fig. 5: (Color online) Sum of squared residuals. (a) The sum of
squared residuals χ2 as a function of the bulk homeostatic pres-
sure P b

H . There exists a clear minimum around −1 to −2 kPa.
(b) The sum of squared residuals χ2 as a function of growth
force B∗ and adhesion strength f∗

1 (heat map directly below
black crosses with scale on the right) and the bulk homeostatic
pressure P b

H as a function of the same parameters (heat map
above black crosses with scale above plot). The black crosses
mark the exact values for B∗ and f∗

1 used in the according
simulations. Note that a low χ2 (blue) always coincides with a
P b

H of −1 to −2 kPa (red/orange).

Former experiments measured the growth of cellular ag-
gregates under pressure [8,24]. From the growth curves
and the surface growth model of eq. (4), the bulk growth
rate and the surface rate increment have been extracted
for 5 different cell lines under various intensities of pres-
sure (see table 1). All studied cell lines have a negative
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Fig. 6: (Color online) Experimental data and simulation fits.
(a) Experimentally determined absolute bulk growth rate kb as
a function of the pressure P for different cell lines (closed sym-
bols). The open symbols show the same simulation data that
was fitted to CT26, rescaled according to kb(0). The dashed
lines represent a linear extrapolation of each cell line. Note
that all cell lines have a negative growth rate at zero pressure.
(b) Same as in (a) but rescaled with the growth rate at zero
pressure kb(0). The dashed line represents a linear fit of the
data of CT26 and the open symbols show simulation data with
P b

H ≃ −1.3 kPa. The relative bulk growth rate of HT29 under
pressure is off scale (−65). Error bars obtained from jackknife
estimation.

bulk growth rate at zero external pressure, indicative of a
negative homeostatic pressure.

To estimate its magnitude, we extrapolate the bulk
growth rate linearly to zero, using eq. (1). This yields
a negative bulk homeostatic pressure roughly around
−5 kPa. The only exception, for the HT29 cell line, re-
sults in a much smaller value of −0.16 kPa (see table 1).
However, simulations show that the linear extrapolation is
not valid for all applied pressures, and the data of CT26
further underlines this nonlinear trend.

In order to match the simulations to the experimental
data of CT26, we varied the parameters growth force B∗

and adhesion strength f∗
1 around their standard values

from [8] and measured the growth rate for several different
imposed pressures. The pressure rescaling factor P̂ was
then determined for each parameter set by minimizing the
sum of squared residuals

χ2 =
∑

i

(
kCT26

b (Pi) − ksim
b (Pi/P̂ )

)2
. (5)

t = 0d t = 12d t = 13d t = 15d t = 24d

Fig. 7: (Color online) Virtual 3d laser cut experiment. Set-up
and colors are the same as in fig. 1. The tissue grows, fills the
compartment and pulls down the piston, until a steady state
under tension is reached. Upon laser exposure (visualized by
the red box), cells are taken out of the simulation and the
piston relaxes back to its equilibrium position. The free surface
increases the growth rate of the tissue until the wound is closed
and the same steady state under tension emerges again.

In fig. 5(a) χ2 is plotted as a function of the resulting bulk
homeostatic pressure P b

H , with a clear minimum around
−1 to −2 kPa. Although we find a f∗

1 with a low χ2 for
each B∗, the resulting homeostatic pressure always lies
around −1 to −2 kPa (see fig. 5(b)).

Surprisingly, a rescaling of the fitted simulations accord-
ing to the bulk growth rate at zero pressure nicely repro-
duces the data of three of the remaining four cell lines (see
fig. 6(a)). Therefore, rescaling the experimental data with
the zero pressure growth rate collapses all curves onto one
(except HT29). This is shown in fig. 6(b) and suggests a
certain universality to the shape.

Conclusions. – In summary we showed that a nega-
tive homeostatic pressure is possible and stable. Indeed,
such a tensile state is suggested by experimental data and
fitting our simulations estimates the homeostatic pressure
of four out of five analyzed cell lines to be of the order of
minus one to two kPa. The homeostatic pressure grows
with compressibility, growth force and the reduction of
adhesion. It is known that as cancer evolves, tumor cells
have a lower expression of the cell-cell adhesive protein
E-cadherin [25]. Here, we show that a reduction of cell-cell
adhesion could increase the homeostatic pressure, which
would favor cancer progression [6]. Furthermore, the in-
crease of homeostatic pressure with cell compressibility
hints for an explanation as to why cancer cells across many
different origins are consistently found to be softer [17–23].

The negative homeostatic pressure offers a novel and
simple explanation of how tensile homeostasis is main-
tained. Indeed, many epithelia are found to be under
tension in vivo [2,3,26–28]. Laser ablation experiments
typically show recoil velocities after the cut, clearly prov-
ing the epithelia to be under tension. Intuitively one could
think that a tensile homeostasis is unstable: a simple cut
relaxes stress, leading to an elevated pressure and thus
more apoptosis. However, as we have shown, the surface
growth effect stabilizes the tensile state. In the simula-
tions we can perform a 3d virtual laser cut. While a cut
leads to a certain recoil, cells grow faster at the new free
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surface, closing the wound (see fig. 7 and Supplementary
Movie S2 gcg.avi).

One question that remains unanswered is: what could
be the evolutionary advantage of a tensile homeostatic
state? While we can only speculate, a few ideas suggest
themselves. The combination of surface growth and bulk
death naturally lead to finite-sized compartments. The
mechanism described here could be a simple method of
size control. From a mechanics point of view, a tensile
tissue connected to a stiff skeleton seems more capable of
sustaining its shape and integrity under constantly chang-
ing external forces.
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