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ABSTRACT

The crowded bacterial cytoplasm is comprised of biomolecules that span several orders of magnitude in size and electrical
charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of
intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of
self-assembled bacterial Genetically Encoded Multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge
(-2160 to +1800 e) in live Escherichia coli cells. To probe intermolecular details at spatial and temporal resolutions beyond
experimental limits, we also developed a colloidal whole-cell model that explicitly represents the size and charge of cytoplasmic
macromolecules and the porous structure of the bacterial nucleoid. Combining these techniques, we show that bGEMs spatially
segregate by size, with small 20-nm particles enriched inside the nucleoid, and larger and/or positively charged particles
excluded from this region. Localization is driven by entropic and electrostatic forces arising from cytoplasmic polydispersity,
nucleoid structure, geometrical confinement, and interactions with other biomolecules including ribosomes and DNA. We
observe that at the timescales of traditional single molecule tracking experiments, motion appears sub-diffusive for all particle
sizes and charges. However, using computer simulations with higher temporal resolution, we find that the apparent anomalous
exponents are governed by the region of the cell in which bGEMs are located. Molecular motion does not display anomalous
diffusion on short time scales and the apparent sub-diffusion arises from geometrical confinement within the nucleoid and by
the cell boundary.
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INTRODUCTION

In the absence of membrane bound-compartments and transport motor proteins [1, 2], bacterial cells rely almost exclusively on
thermal, electrostatic, and hydrodynamic interactions to achieve spatial organization that is important for biological function
[3, 4, 5, 6, 7, 8]. These interactions take place within the extremely crowded and polydisperse bacterial cytoplasm [9, 10, 11],
whose components span multiple orders of magnitude in both size and charge. Charge and size are typically linked, with
ions of size ∼ 0.1 nm being weakly positive (∼ 1e), proteins of size ∼ 1 nm roughly neutral to weakly negative (∼ 1e -
10 e), and large macromolecular complexes such as ribosomes, polysomes and nucleic acids having large negative charges
(∼ 1,000−10,000e) [12]. The bacterial chromosome is condensed near the center of the cell in a highly organized structure
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called the nucleoid [12, 13]. In E. coli the nucleoid occupies 35-65% of the cellular volume [14, 15, 16, 17], with a mesh size
of ≈ 50 nm [18]. Thus, large macromolecular complexes, such as active ribosomes and polysomes, tend to be excluded from
this region [19, 20, 13, 21, 22, 23], while ribosomal sub-units and small proteins are free to penetrate into and diffuse within
[13, 21, 24, 25] the membrane-less nucleoid. Electrostatic charge plays an important role in spatial segregation of the nucleoid
[12] and intermolecular interactions outside the nucleoid [26, 27]. However, its effect on intracellular particle localization is
unknown.

Beyond this static picture of intracellular organization, the bacterial cytoplasm is a highly dynamic environment. Intracellular
search and transport processes crucial for cell growth and survival are primarily driven by thermal diffusion [28, 29, 30], but the
size- and charge-dependent dynamics of molecules in the cytoplasm are not fully understood. Previous single-particle tracking
(SPT) experiments of molecules have reported sub-diffusion in living bacterial cells [31, 22, 16, 32, 33], which might play an
important role in bacterial regulation by keeping molecules close to their target sites and reducing search times [34]. For small
particles, such as proteins (∼ 1 nm), any apparent sub-diffusivity can be attributed to the effects of confinement within the
small cellular volume (∼ 0.1-1 µm3) [35, 36]. For larger particles (∼ 10 nm - ∼ 100 nm), both diffusive [18] and sub-diffusive
behavior [31, 22, 16, 32, 33] have been reported. This slow down in particle dynamics has been proposed to emerge from
cytoplasmic complexity instead of geometrical effects [34, 31, 33]. The proposed mechanisms include: caging due to extreme
crowding [37, 34, 38], binding and unbinding events [34], spatial and dynamic heterogeneities in the cytoplasm [33], and
non-ergodicities of a “glassy bacterial cytoplasm” [31]. However, there is no clear consensus on the degree of anomalous
diffusion or the primary mechanism driving this behavior. Furthermore, little is known about the effects of particle charge on
dynamics. It has been shown that positive proteins diffuse considerably slower than their negative counterparts [39, 19], but we
lack an understanding of how charge affects the motion of larger macromolecules.

Previous SPT experiments have been unable to directly address these questions due to limitations in dimensionality and
spatio-temporal resolution. Studies reporting sub-diffusion have relied on two-dimensional (2D) SPT measurements. However,
interpreting the actual 3D motion from 2D projections is challenging [40]. Typical observed trajectories are short such that
statistical analyses of the displacement only cover approximately one order of magnitude in time scale. Finally, some strategies
for generating macromolecular sized particles for tracking result in polydisperse assemblies[34, 31], precluding accurate control
of the characteristics such as size and charge.

Physics-based modeling of the bacterial cytoplasm serves as a promising avenue to complement SPT experiments by
interrogating microscopic forces and fluid dynamics at shorter length and timescales than can be achieved experimentally
[11, 41]. Current models of diffusion in the bacterial cytoplasm focused on the nucleoid-free region [9, 42, 41, 26, 27],
neglecting both confinement [43, 44, 45] and the nucleoid, which are essential to study dynamics and organization on cellular
length scales. Dynamic simulations of the nucleoid itself [46, 47, 48, 49, 50] have not represented the size-polydispersity of
the rest of the crowded cytoplasm, and therefore are not easily adaptable to study more general features of heterogeneous
macromolecular composition and cellular-scale dynamics in E. coli.

In this study, we aim to understand the role of particle charge and size on in vivo dynamics, considering different
attributes of the heterogeneous intracellular environment across multiple timescales, including confinement, size polydispersity,
intermolecular interactions, and the presence of a porous nucleoid. To do so, we combine high spatial and temporal resolution
3D-SPT of bacterial Genetically Encoded Multimeric Nanoparticles (bGEMs) of tunable fixed diameter (20, 40, and 50 nm) and
charge (-2160, -840, +1800e) with colloidal whole-cell dynamical modeling as well as longer-time probabilistic simulations
of an excluded volume nucleoid to interrogate how macromolecular and cell-scale characteristics affect emergent dynamic
behaviors in E. coli. Our results show that size and charge primarily determine where bGEMs localize inside the cell. This
localization emerges from entropic and electrostatic interactions of the particle with the nucleoid pore structure and the rest of
the cytoplasmic milieu. Importantly, we find that confinement effects can primarily explain the anomalous diffusion measured
in previous SPT studies. Combining 3D-SPT experiments and coarse-grained whole-cell modeling enables us to explore
dynamics below the temporal resolution of 3D-SPT and suggests physical mechanisms underlying the experimentally observed
phenomena.

RESULTS
We use biplane microscopy to track the 3D motion of self-assembled nanoparticles, each of a fixed size and charge in live E.coli
cells. We adapted these bacterial nanoparticles, termed bGEMs, from eukaryotic Genetically Encoded Multimeric nanoparticles
(GEMs) [55]. Biplane microscopy enables us to image simultaneously two focal planes, resulting in three-dimensional
information of the particle’s position with sub-pixel resolution (see Table S1 for localization errors) and the ability to track
single particles for hundreds of frames (∼ 1 s) at a rate of 30 ms per frame (SI Movie 1). Until now, this time resolution has
been absent in the bacterial literature. A typical experimental data set is exemplified in Figure 1(a-c) and SI Movie 2. Three
representative time frames from a bacterial cell are shown, with the DNA labeled in magenta, and the cellular wall labeled in
blue. Typically, a single bGEM (green) is self-assembled per cell. We use custom software (See S1 in SI) to reconstruct each
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Figure 1. 3D-SPT experiments and whole-cell colloidal simulations probe macromolecular dynamics in E. coli. (a) Sample
bacterial cell imaged through biplane microscopy. In biplane microscopy two focal planes are imaged simultaneously
(schematic, left). Three snapshots are shown (images, right) from left to right in Plane 1 (top row) and Plane 2 (bottom row).
The bacterial membrane is labeled in dark blue and the DNA is stained in magenta . Cell and nucleoid envelopes are outlined in
white and red, respectively. The bGEM nanoparticle (green) is initially in focus in Plane 1 (top row, left); as it moves through
the cell, it comes into focus on Plane 2 (bottom row, right). (b) Sample 3D trajectory for a 50nm particle. (c) yz projection of
the trajectory shows the particle is primarily excluded from the cell’s nucleoid. (d) Whole-cell colloidal model of E. coli,
cross-sectional view, dynamic simulation snapshot. The nucleoid (magenta, outlined in red) is interpenetrated and surrounded
by a polydisperse cytoplasm, confined by a cellular membrane (blue). The cytoplasm consists of negatively (grey) and
positively (white) charged native crowders (which represent proteins, ternary complexes, transcription factors, ribosomal
subunits, etc), negatively charged ribosomes and polysomes (yellow), and bGEMs (green) at physiological abundances and
densities [51, 52, 53, 41, 54]. The dynamical motion of individual bGEMs (green sphere, zoomed-in view, right) is tracked in
simulation and compared to the 3D particle traces from experiments. Each particle moves via Brownian motion and interacts
directly and physically with other macromolecules, the nucleoid, and the cell membrane. 3/16
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particle’s trajectory in 3D (Fig. 1(b), SI Movie 3). When measuring and describing 3D trajectories, we adopt a right-handed
coordinate system such that the long axis of the cell is aligned along x and the focal axis of the microscope is aligned along z.
Figure 1(c) shows the yz cross-section of the trajectory in (b). This cross-section clearly exemplifies nucleoid exclusion, with
the particle avoiding almost entirely the interior of the cell. Inferring this type of information from a 2D-SPT projection would
be challenging as it would require extensive probabilistic modeling to reconstruct a likely 3D trajectory. We chose to focus
our analysis in stationary phase cells to avoid growth effects and to preserve the shape of the nucleoid. However, we observe
excellent agreement between exponential and stationary phase localization and dynamics (Fig. S1).

We also developed a colloidal physics-based whole-cell model to investigate intermolecular dynamics at angstrom spatial
and picosecond temporal resolutions, which are inaccessible to experiments (Fig. 1(d), SI Movie 4). Our model explicitly
represent the size and charge polydispersity of macromolecules in the cytoplasm at physiological abundances derived from
the literature and the porous structure of the bacterial nucleoid within a confining cell membrane (see Section and S4). This
synergistic experimental and computational approach enables us to explore the impact of size and charge on diffusion inside E.
coli from molecular to whole-cell length and time scales.

Size-based particle segregation in E. coli
We first asked how macromolecular size affects sub-cellular particle localization inside the bacterial cell using three bGEM
diameters: 20, 40, and 50 nm. In both experiment and simulation, we observe size-dependent localization of macromolecules
in the bacterial cell. Figure 2 (a) shows 2D histograms of the position of detected particles in the xy and yz projection planes
for each particle size. An outline of the average cell and nucleoid size are shown overlaid. The contrast of the images has
been enhanced linearly to improve visibility. Raw images with a grayscale denoting number of localizations is shown in fig.
S2 for all 3 projection planes (xy,yz,xz). The 20-nm bGEMs are enriched inside the interior nucleoid region, while the larger
particles are preferentially localized in the cellular periphery with 40-nm particles exploring a larger fraction of the nucleoid
than their 50-nm counterparts. These trends are evident in the radial distribution of the particle positions (Fig. 2 (b)), where the
probability distributions shift towards the cellular periphery as particle size increases. The radial distributions are calculated
exclusively for the cylindrical portion of the spherocylindrical cells because including the poles would bias the distributions
towards the center of the cell. Therefore, since radial distributions do not capture enrichment at the poles, we also calculated
the pole occupation (percentage of localizations compared to all localizations). For all particle sizes pole occupation is small,
less than 15% (See Fig. S3). As expected, this number is smallest for the 20 nm particles, ≈ 5%, but unintuitively the pole
occupation is highest for the mid-sized 40 nm particles (≈ 15%) and not the 50 nm particles ≈ 10%. Poles account for close to
15% of the cellular volume, therefore this suggests that the 50 nm particles tend to localize at the periphery of the cylindrical
segment of the cell and are excluded from the poles. Using custom code, we segmented the bacterial nucleoid for each cell
using the DNA label shown in 1(a) and then classified the trajectory points as located inside or outside the nucleoid region, as
shown in Fig. S10 (see S3 in SI for details). We calculated the nucleoid occupation time from this data, defined as the ratio
of time spent inside the nucleoid over the total number of time points measured, and find that it decreases considerably with
particle size (Fig. 2 (c)). We observe that 20-nm particles spend the majority of time inside the nucleoid (≈ 60%) while the
opposite is true for larger 40 and 50 nm particles (¡40%). Colloidal simulations replicate the experimental trends with excellent
agreement as shown in 2(c).

We hypothesized that physical features of the nucleoid underlie the observed size-selective particle localization. To probe
this hypothesis, we calculated the distribution of void (hole) sizes within the self-assembled nucleoid used in the whole-cell
colloidal simulations. The microstructure of the porous network is heterogeneous: with an abundance of void sizes ranging
from small ∼ 1 nm to large ∼ 100 nm (see Fig. S12). Using this distribution and void connectivity estimates for the simulated
nucleoid, we calculated that particles with a diameter less than 80 nm would be able to diffuse into and pass through the entirety
of the nucleoid. According to this theoretical prediction, all bGEM sizes should be able to fit within the pores of the nucleoid.
However, the cumulative void size distributions shows that the percentage of accessible voids drops rapidly with particle size
(Fig. 2 (d)). In particular, we found that 85%, 63%, and 49% of the voids are bigger than 20 nm, 40 nm, and 50 nm, respectively
(dashed colored lines). The ratio of these percentages is close to the ratio of nucleoid occupation for the different sized bGEMs,
suggesting that the underlying structure of the nucleoid’s empty space is responsible for the size-based spatial segregation we
observe.

The lack of available space for larger molecules in the porous nucleoid structure results in their localization to the intracellular
space outside the nucleoid. It is known that large macromolecules in E. coli such as active ribosomes and polysomes are
excluded from the nucleoid [18]. This result is recapitulated in our model, where the equilibrium ribosome and polysome volume
fraction outside the nucleoid is over 2.5 times higher than ribosomes inside the nucleoid. More specifically, the equilibrium
ratio of single ribosome volume fraction outside to inside the nucleoid is approximately 0.95, whereas polysomal ribosomes
(part of chains of six ribosomes) are almost completely excluded. These results are consistent with our experimentally-observed
nucleoid occupation of bGEMs.
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The exclusion of larger molecules from the nucleoid drives a small increase of packing fraction in the cytoplasm compared
to that in the nucleoid (about 3%). The corresponding higher osmotic pressure in the cytoplasm tends to push smaller particles
towards the center of the cell. This size segregation of particles in the cytoplasm is an example of entropic de-mixing, previously
identified by Gonzalez et al. in confined colloidal suspensions [44]. We explored these size exclusion and demixing effects
in a prior study of a simpler model cell, exploring strictly the role played by size variation and excluded volume effects in
localization in and around a model nucleoid [56]. In that work, we showed that in the simpler monodisperse system, particles
are preferentially excluded from the nucleoid, regardless of DNA compactness and density. But we found that when two or
more particle sizes are present, the nucleoid becomes enriched in smaller particles whilst the surrounding cytoplasm becomes
enriched in larger biomolecules, and the concentration of small molecules in the nucleoid is sometimes even higher than the
nucleoid-free region. These simplified systems suggest that the localization trends in Figure 2 are a direct result of the cell’s
broad polydispersity. The nucleoid’s void size distribution acts as an entropic size filter, enhancing the localization of small
particles inside the DNA rich area and excluding larger particles to the cellular periphery. Our results are consistent with a
nucleoid mesh size of ≈ 50 nm, in agreement with previous reports [18].

Charge-based particle segregation in E. coli
In addition to the entropic interactions explored above, other forces present inside the cell may also affect particle localization.
In particular, intermolecular, solvent-mediated electrostatic interactions are likely to alter particle position. In the size-effect
studies, we used the msfGFP construct which carries a charge of −7e per protein. Using this fluorophore, 40 nm particles have
a total charge of −840e and explore most of the cellular volume in both experiments and simulations. This diameter is thus
ideal to observe charge-based localization effects. We expressed 40-nm bGEMs with GFP variants that produce total charges
of −2,160e and +1,800e, allowing us to explore the effect of large negative and positive charges. We observe significant
differences in particle localization between the charge-variant bGEMs, although this effect is smaller than for different sizes.
Figure 3 (a) shows position density histograms for the charge variants. Very negative bGEMs (−2,160e) are enriched inside and
towards the periphery of the nucleoid, while the relatively neutral bGEMs (−840e) are slightly enriched outside the nucleoid
but free to explore most of the bacterial cell. Very positive bGEMs (+1,800e) tend to be fully excluded from the nucleoid and
localize preferentially near the cellular poles. Overall, highly charged particles explore a much smaller fraction of space than
their neutral counterparts, resulting in bright spots in the density histograms. In the case of the −2,160e particles, these bright
spots are often the result of motion occurring in the direction orthogonal to the projection plane shown in fig. 3 (a). E.g., little
motion along xy and xz combined with considerable motion along yz will lead to a bright spot in the yz image, but not in the xy
and xz images.

In Figure 3 (b), the probability distributions shift towards the cellular periphery as charge becomes less negative. This effect
is less pronounced in the radial distribution for the positive particles, however it is very clearly demonstrated by a marked
increase in the polar occupation time of these particles (≈ 25%) with respect to their negative counterparts (≈ 15%). We next
measured the amount of time the particles spent inside the nucleoid (Fig. 3 (c)). Once again there is excellent agreement
between experiment (black) and simulations (red). We observed little difference in nucleoid occupation time between the two
negatively charged particles, with both particle types spending close to 40% of the time in the nucleoid region. However, for
positive particles, the nucleoid occupation is reduced to ≈ 25%. This nucleoid exclusion is stronger than the exclusion of the
larger 50 nm particles (≈ 30%) in fig. 2.

Our whole-cell colloidal simulations enable us to investigate the intermolecular interactions of the bGEMs with other
cytoplasmic macromolecules. To quantify these interactions, we calculated coordination number probability distributions
for each of the different cytoplasmic components interacting with bGEMs in the simulation. We also calculate the average
coordination number for each molecule type normalized by that for a bGEM that has zero net charge (Fig. 3 (d)). The
coordination number corresponds to the average number of each type of molecule whose surface is within a 1-nm shell around
a bGEM. We observe that positive bGEMs are almost exclusively surrounded by ribosomes, exhibiting long-lasting interactions.
Less frequently we observe additional interactions with DNA, however even in this case, the ribosomes partially surrounded the
positive bGEM (Fig. S14). Ribosomes, composed primarily of negatively charged rRNA molecules, have a total charge of (≈
-3,000 e), resulting in a stronger attraction to positive bGEMs than the nuclear DNA (Fig. S13). Further, unlike the DNA, which
exists in a large continuous network, ribosomes are freely mobile and able to reorganize to surround the bGEMs. As previously
discussed, active ribosomes and polysomes tend to be excluded from the nucleoid, enhancing the bGEM localization even
further. This ribosome cloud surrounding the positive bGEM increases the effective particle size considerably and prevents it
from moving into the DNA-rich areas of the cell.

We also find that negative bGEMs have only transient short interactions with other cellular components, resulting in much
smaller coordination numbers (Fig. 3 (d),(Fig. S14 (d))). The most negatively charged, −2,160e, bGEMs form transient
clusters with positively charged crowders that are found throughout the cytoplasm and nucleoid, as evident from simulation
snapshots and our calculated coordination numbers. The more neutral, −840e, bGEMs exhibit generally weak electrostatic
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Figure 2. Macromolecular localization in E. coli depends on size. (a) xy and yz 2D histograms of20nm (3750 localizations),
40nm (9500 localizations), and 50nm (24000 localizations) tracers in top, middle, and bottom images, respectively. Cell sizes
are normalized. Brighter intensity shows more localization. Contrast adjusted linearly to improve visibility. Average nucleoid
region (red dashed line) and cell periphery (solid white line) are highlighted. (b) Radial density distributions (experiments) shift
toward the cell periphery as tracer size increases. (c) Nucleoid occupation time (defined as total number of timepoints in the
nucleoid divided by length of the trajectory) decreases with tracer size. The agreement between experiment (black) and
simulations (red) is excellent. (d) Percent of voids in the nucleoid large enough to permit passage of a tracer of size a, for a
range of tracer sizes shown on the horizontal axis. Inset: simulation snapshot of the interconnected nucleoid network with
pores that permit penetration of a bGEM of size 20 nm (orange), 40 nm (light blue), and 50 nm (purple) highlighted. All bGEM
sizes studied here can fit in some pores of the nucleoid, but smaller bGEMs (colored circles, inset) penetrate more of the void
distribution.

interactions without much difference between positive and negative crowder coordination numbers. From these differences
in the negative particle’s electrostatic interactions, we observe that even if large-scale localization (quantified by nucleoid
occupation) is almost identical, our model suggests that bulk charge leads to significant changes in local macromolecular
environments for each GEM. Molecular charge can thus have a strong impact on sub-cellular localization and organization,
depending on the relative charge and localization of other cellular constituents.
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Figure 3. Electrostatic interactions between bGEMS and other cytoplasm macromolecules determine the localization of
bGEMS. (a) xy and yz 2D histograms from experiments for 40nm bGEMs of charge of -2160e (7,500 localizations), -840e
(9,500 localizations), and +1800e (11,000 localizations) in top, middle, and bottom images, respectively. Brighter intensity
shows more localization. Contrast adjusted linearly to improve visibility. Average nucleoid region (red dashed line) and cell
periphery (solid white line) are highlighted. (b) Radial density distributions (experiments) shift towards the cell periphery as net
charge increases. (c) Nucleoid occupation time for experiment (black) and simulations (red) shows good agreement. Negatively
charged bGEMS spend ≈40% of their time inside the nucleoid, much more than positively charged bGEMs (≈25%) (d) The
normalized mean coordination number (average number of neighboring negative crowders, positive crowders, nucleic acids,
and ribosomes per GEM divided by that of a GEM with zero net charge) obtained from simulation quantifies macromolecular
interactions and shows that positively charged bGEMS bind to ribosomes, explaining why they spend less time inside the
nucleoid. Strongly negative particles form clusters with surrounding positively charged proteins, yielding a larger effective
particle size yet still manage to enter the nucleoid. In contrast, only strong interactions with ribosomes outside the nucleoid and
DNA inside the nucleoid definitively segregate biomolecules either inside (DNA-bound) or outside (ribosome-bound) the
nucleoid. Insets: simulation snapshots for (left) -2160e, (middle) -840e, and (right) +1800e bGEMs.

Particle dynamics are governed by charge and size
Our localization results indicate that increased macromolecular charge has an important effect on the strength and extent
of interactions between cellular components. However, as exemplified in the simulation video (SI Movie 4), the bacterial
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Figure 4. Macromolecular dynamics are governed by size and charge. (a) 3D experimental Mean Square Displacement
(MSD) for all bGEM sizes and charges as a function of lag time. Motion appears sub-diffusive with an exponent smaller than 1
(dashed black line) for all particles. Inset: particles experience different confinement volumes based on size. (b) MSD from
whole-cell colloidal simulations for all bGEM sizes and charges as a function of lag time. Dynamics at shorter timescales have
a power-law exponent much closer to unity. (c) Experimental mean-squared displacement normalized by diffusion coefficients
obtained from probabilistic simulations of the excluded volume nucleoid as a function of lag time shows that the power-law
exponent of diffusion for each particle size and charge is explained by a confined random walk in the cellular region the particle
occupies. (d) 2D (x,y) MSD of ribosomes and bGEMs as a function of lag time. Qualitative agreement between these data from
bGEMs and previously published ribosomal diffusion data (reproduced with permission from Bakshi et al. [22]) indicates that
bGEMs serve as good probes of biophysical dynamics of large particles in E. coli.

cytoplasm is a highly dynamic system with constant particle rearrangements, and while stronger localization is often biologically
favorable, there could be a trade-off when it comes to dynamics. To explore this, we calculated the ensemble-averaged mean
squared displacement (MSD) as a function of lag time for both experimental and simulation trajectories. Figure 4(a) shows
experimental MSDs for all particle sizes and charges. Focusing on the longest-time lags, we see that all the curves plateau
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(inset). This is expected for particles confined to a finite volume, and it demonstrates that the particles are exploring the full
volume in which they are confined. In the case of the larger particles, this corresponds to the full cell size, whilst the 20nm
bGEMs are mostly confined to the smaller nucleoid. This is consistent with our localization results in Figure 2. Additionally,
we observe that regardless of charge or size, the motion appears sub-diffusive for all bGEMs within the first 5 timelags, i.e.,
with a power law exponent α < 1 for MSD= 6Dtα . α is approximately 0.75 for large particles and 0.45 for the small 20-nm
particles (Table S2). These exponents were estimated by fitting the data to a sub-diffusive model that accounts for localization
errors as described in §S2.

We next set out to explain the origin of the apparent sub-diffusivity of the bGEMs. The sub-diffusion we observe could be an
effect of confined motion in a spherocylindrical cell (apparent sub-diffusion), or it could be the result of viscoelastic interactions
in the extremely crowded and polydisperse cytoplasm (true sub-diffusion). Even for the smallest lag times in our 3D SPT
experiments, 30 ms, there is enough time for a bGEM to diffuse a distance several times larger than its own diameter, which
could introduce confinement-related artifacts into the MSD. This realization prompted us to conduct further investigations
into the power-law exponent observed in experimental results using our whole-cell colloidal simulations. These simulations
have a time resolution from milliseconds down to picoseconds, far below experimentally resolved timescales. In the simulated
trajectories (4 (b)), we observe that departures from normal diffusion appear to be much smaller than observed in experiment
(α > 0.84 for all bGEMs). This departures from normal diffusion is driven in part by bGEM dynamics inside the nucleoid,
where motion is more subdiffusive (Fig. S15) due to particles diffusing through a stiff polymeric network. Furthermore, bGEMs
outside of the nucleoid explore only a small, 383-nm, space between the cellular membrane and nucleoid, likely experiencing
caging at intermediate timescales due to confinement [45]. While this caging might be enhanced by electrostatic interactions
which form more durable cages and bonds, electrostatic interactions are likely not a significant source of sub-diffusion since the
exponents for all bGEM charge variants are very similar (Table S2). Regardless, the dynamics observed in our simulations are
driven by colloidal-scale forces and phenomena, since our model assumes that the cytoplasm is inherently Newtonian. The low
amounts of sub-diffusion we find in the colloidal simulations emerge from interparticle correlations driven by confinement,
crowding, and electrostatics.

Next, we further interrogated computationally the impact of confinement and geometry on long-time self-diffusion at
timescales similar to those in SPT experiments (∼ 10 ms and beyond). While a spherical enclosure is highly efficient
computationally and provides accurate enclosure effects for short-time diffusion, at long times, the sphero-cylindrical shape
of the enclosure matters and can influence the power-law behavior. To increase computational speed and efficiency, simulate
experimental timescales, and faithfully represent cell geometry effects in the long-time limit, we expanded a probabilistic
simulation method previously used in literature [22, 57, 24, 58, 36]. In these longer time simulations, the nucleoid was replaced
with an excluded volume region, and a single bGEM undergoes diffusion inside of a spherocylindrical cell, with a defined
probability that the GEM particle could enter or exit the nucleoid. This probability was extracted from both experimental and
simulations data, and allowed rapid simulation of many trajectories. For large particles, simulating diffusion throughout the
entire cell gives excellent agreement with the experimental data (Fig. S16 B-E). Meanwhile, for the 20-nm particles, the best
fit corresponds to motion confined to the nucleoid exclusively (Fig. S16 C), which is consistent with the experimental radial
probability distribution in Figure2 (b). Using this model, and by adjusting the diffusion coefficients by less than a factor of 2
from those determined from the experimental MSD, we observe almost perfect agreement with the experimental data (Fig. S16)
and interpret these small corrections to the diffusion coefficients as the result of imperfect fitting due to the nonlinear nature of
the experimental MSD curves.

Our simulations show that 3D confinement effects are sufficient to explain the anomalous diffusion measured in E. coli. To
further exemplify this point, we normalized the experimental MSDs for all bGEMs by the fitted anomalous diffusion coefficient
(for details on the fitting refer to §S2) in Figure 4 (c). Upon doing this normalization, all the MSD curves collapse together at
short and intermediate times, demonstrating that confined Brownian diffusion is the unified mechanism of apparent anomalous
transport in E. coli. At longer times, the MSD corresponding to the 20-nm bGEMs deviates significantly from the rest, due to
the faster timescales in which confinement effects begin to dominate particle motion. Overlaying the collapsed curves with the
normalized MSDs from the simulations reveals that the larger particle’s dynamics are well reproduced by a particle confined
to a porous spherocylindrical shell. The observed dynamics for the 20-nm particles are consistent with confinement to the
nucleoid. We conclude that a large fraction of the non-trivial anomolous dynamics observed in ours and previous experiments
are a result of confined diffusion to the finite volume explored by the particle, i.e. this is apparent sub-diffusion as defined
above. The confinement volume is determined primarily by the size of the particle, with small contributions from particle
charge (Fig. S16).

How do macromolecular size and charge affect dynamics in vivo? One of the features we observe is that macromolecular
interactions play a key role in driving qualitative differences in dynamics over short timescales. Smaller macromolecules diffuse
further than larger ones over short times, which we observe both in simulation and experiment. However, at longer time lags we
observe experimentally that 20-nm particles moved approximately 50% less than naively expected as they experienced stronger
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confinement in the nucleoid region and increased difficulty diffusing in the porous DNA network.
Although particle charge has a more modest effect on localization than size at whole-cell length scales, it has a more

appreciable impact on particle dynamics. Positive bGEMs in both experiment and simulation move considerably slower than all
the other bGEM variants. While positive bGEMs are not permanently bound to ribosomes or DNA, electrostatic interactions
with these cytoplasmic components slow down dynamics by almost an order of magnitude with respect to the more neutral
−840e bGEMs (Fig. 4 (a) and (b)). For the very negative −2,160e bGEMs we observe an important ≈ 40% decrease in motility
with respect to the −840e bGEMs in experiment. However, in our simulations, mobility of −2,160e bGEMs was reduced only
5-10% compared to −840e bGEMs. The smaller effect shown in simulation is a result of transient interactions with positively
charged macromolecules in the cytoplasm, suggesting that an isotropic model where the net charge is used may not be enough
to reproduce dynamics of very negative GEMs. In vivo, it is possible that GEMs have longer-lasting electrostatic bonds to
positive surfaces of net negatively charged macromolecules. Other differences in experimental and simulation dynamics, such
as faster dynamics observed in simulation for all GEMs, are likely due to model assumptions that were necessary to make the
simulations computationally tractable, such as the absence of hydrodynamic interactions between macromolecules and between
macromolecules and the membrane [43, 44, 45]. We do not make any ad-hoc adjustments to interaction parameters that may
also enable a better quantitative match as done in previous studies [9]. Overall, the qualitative agreement with simulations
and experiments supports our hypothesis that molecular-level interactions that act on short timescales largely set the relative
dynamics over the longer timescales observed in experiments.

Given that our experimental data is best fit by a confined random-walk model in a sphero-cylindrical geometry (Fig. 4c), we
converted the diffusion coefficients extracted from the long-time probabilistic simulations to an ”effective viscosity” (ηeff) of
the cytoplasm using the Stokes-Einstein relation. All bGEMs experience a viscosity ∼ 100 cP (see Table S7), roughly an order
of magnitude higher than that of proteins [59], including GFP [60, 19, 61], diffusing in the E. coli cytoplasm, and two orders of
magnitude higher than the viscosity of water. The effective viscosity was roughly 100 cP for all particle with roughly neutral
charge. However, electrostatic interactions greatly influence the effective viscosity experienced by the 40-nm charge variants,
with ηeff,+1800e ≈ 5.5ηeff,−840e and ηeff,−2160e ≈ 2.5ηeff,−840e.

bGEMs are useful probes for investigating the in vivo dynamics of similarly-sized macromolecules. To compare our results
with 2D-MSD data from the literature, we obtained 2D-MSD (x,y) curves from our 3D data. In Figure 4(d), we overlay these
curves for all bGEM particle sizes and charges on top of data from Bakshi et al. for ribosomal diffusion [22]. The MSD
calculated from ribosome dynamics quantitatively matches our observations using 50-nm bGEMs. Like our engineered particles
of this size, ribosomes (and polysomes) are highly negative [12] and tend to be excluded to the cellular periphery [22, 20].
This suggests that, as a first approximation in terms of their dynamics, ribosomes behave like spherical complexes with a
homogeneous negative charge distribution on their surfaces, as reported in [12], though deviations between simulation and
experiment for the reduced mobility of negative bGEMs suggest that non-isotropic interactions may quantitatively change
dynamics.

DISCUSSION
Our synergistic experimental and computational approach to studying intracellular dynamics has revealed key details of how
macromolecules move in the bacterial cytoplasm. Relative speeds can be attributed to interactions within the cytoplasm whereas
sub-diffusive power-law exponents observed in experiments for tracer molecules and ribosomes [34, 31, 16, 32, 16] primarily
stem from three-dimensional confinement effects. These effects become evident even at the shortest experimental timescales.

First, we establish that particle size is the primary determinant of bGEM localization inside E. coli cells. With small particles
(20 nm) enriched inside the nucleoid, medium sized particles (40 nm) able to explore both regions, but slightly enriched outside
the nucleoid, and large particles preferentially excluded from the DNA-rich area (50 nm). Detailed characterization of the
simulated nucleoid pore size distribution shows how size determines the percentage of nucleoid volume accessible to a given
macromolecule. Our results suggest that the nucleoid acts as a size-selective migration filter, allowing smaller biomolecules to
pass through easily and excluding larger complexes such as active ribosomes and polysomes. These results are consistent with
a reported nucleoid mesh size of ≈ 50 nm [18] and expand on previous localization observations based on 2D-SPT experiments
in the literature [18] by providing additional nuance: small macromolecules such as ribosomal subunits are able to freely diffuse
into the bacterial nucleoid, and are likely to be enriched in this region. Large macromolecules, on the other hand, tend to be
preferentially, but not completely, excluded from the nucleoid region, which is exemplified by the 50-nm bGEMs spending
roughly 30% of their time inside this region.

These results suggests that size-based localization could serve as an important mechanism for biophysical regulation.
A particularly striking example of the biological importance of size-based filtering is the mRNA life cycle, and the spatial
segregation of transcription and translation inside the cell. It has been proposed that mRNA molecules are transcribed from DNA
inside the nucleoid, where ribosomal subunits assemble around the molecule to start translation. The ribosomal-RNA complex
is then exported towards the cellular periphery [62], and finally after translation the RNAs are degraded by RNAses located
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near the inner membrane of the cell [63]. The mechanism for these processes is not fully understood, but our observations
suggest that small ribosomal subunits and inactive ribosomes (≈ 20 nm) might be preferentially enriched inside the nucleoid,
where the nascent mRNAs are found. Once the translation process begins, and as the mRNA-ribosomal complex grows in
size, its probability of localizing towards the periphery increases, and thus the complexes migrate outside the nucleoid. Hence,
once the mRNAs are fully translated, they will likely be at the correct location for degradation. Future work will be needed to
explore how the nucleoid microstructure might be tuned by changing solvent or growth conditions to promote or hinder the
migration of different biomolecules such as transcription factors, ribosomes, RNA polymerase clusters.

We report that the localization of particles shifts towards the cellular periphery as charge becomes less negative. Positively
charged bGEMs (+1,800e) are almost completely excluded from the DNA-rich area, localizing preferentially at the cellular
poles. Furthermore, although negatively charged bGEMs occupy the nucleoid for similar amounts of time regardless of absolute
charge (−2,160e versus−840e), positive bGEMs spend a much smaller fraction of time inside the nucleoid than any other
bGEM across all sizes and charges. Previous studies in E. coli inferred abundant interactions between positive proteins and
ribosomes [39]. Similarly, our dynamic simulations suggest that positive bGEMs are surrounded by highly motile ribosomes
and polysomes in the cytoplasm, which are themselves entropically segregated from the nucleoid. Our findings suggest that
sub-cellular particle localization is an emergent property of multiple underlying phenomena. In this case, localization is
primarily due to the coupled entropic and electrostatic effects of interacting, polydisperse macromolecules diffusing in a
porous medium and confined to a finite space. Our simulation results also show that, at a smaller length scale, the neighboring
environment of macromolecules is dependent on macromolecular charge, which suggests that electrostatic interactions might
drive increased localization of pairs of molecules that can speed up search processes within the cell, as proposed previously
[26, 27].

Although increased intermolecular interactions might be beneficial for particle localization, the strength of these interactions
can lead to decreased motility in the cell [41, 27]. Indeed, we observed this trade-off in our experimental and simulation results,
where increased net charge of the bGEMs increases electrostatic interactions leading to reduced apparent diffusion coefficients.
In particular, positively charged 40 nm bGEMs effectively diffuse as much larger particles due to interactions with ribosomes,
often forming large clusters. This slowdown of dynamics and the overall difficulty to access the nucleoid region, might explain
in part the charge/size hierarchy in bacterial cells and the absence of positive large macromolecules. While slower dynamics for
positively charged particles has previously been reported in the literature for bacterial and eukaryotic proteins [39, 64], in both
of these studies, significant differences in dynamics were not observed for negatively charged macromolecules of small and
large net charges. In our experiments, we observe a large difference in the effective diffusion coefficient between the two 40-nm
negative bGEM species. This trade-off between localization and dynamics may be tuned in the cell to avoid dynamic arrest and
ensure small enough times for search and capture processes that require physical proximity of the cellular components [2].

Although our results reveal that the nature of the diffusive process inside bacteria is simple diffusion in a crowded
environment, we see a rich array of dynamic behaviors at different timescales. In particular, at the timescales of many biological
processes, macromolecules effectively experience sub-diffusive motion due to confinement. By tuning properties such as a
molecule’s charge and size, cells may be able to achieve localization to a particular region of the cell. This localization might
improve the odds of specific reactions occurring and decrease search times, freeing up energetic resources for other processes
in the cell.

METHODS AND MATERIALS
Experimental setup
Bacterial Genetically Encoded Multimeric nanoparticles (bGEMs)
In this work we engineered 5 new bacterial strains summarized in Table 1. The bGEMs are expressed through new plasmids
developed for this study (see S0 in SI for details), primers and strains used in this study can be found in tables S3, and S4.
Plasmids were transformed into MG1655 WT E.coli using TSS transformation. We based our probe design on the original
Genetically Encoded Multimeric Nanoparticles (GEMs) developed by the Holt lab for tracking experiments in eukaryotic cells
[55]. GEMs self-assemble into bright monodispersed particles with a defined size and shape from homomultimeric scaffolds
fused to a fluorescent protein [55] (Fig. S4. a). Prior to this work, two types of GEMs were published in the literature [55],
with 20 and 40 nm diameters. For this study we developed a new 50 nm GEM particle, measured by negative stain EM (r=25 ±
0.5 nm), using genes from the encapsulin protein of the hyperthermophilic archaeon Vulcanisaeta distributa [65] (see Fig. S4.
b, and additional details in S0 in SI). Additional to the bGEMs plasmids, we used a second plasmid (pSACT101 Ampr) to label
the DNA using the nucleoid associated protein HU-alpha labeled with mRFP1.

Charge variants experimental design
Because most of the charge will be screened by the ion rich cytoplasm, charge interactions occur locally involving only a few
GFP monomers, therefore to compare particle size effects, we used the msfGFP’s native charge of −7e. To explore charge
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Table 1. bGEMs strains developed.

Strain bGEM Fluorescent Antibiotic
number size (nm) protein Resistance
DVM85 20 msfGFP Kanr, Ampr

DVM76 40 msfGFP Kanr, Ampr

DVM79 40 GFP +15 Kanr, Ampr

DVM83 40 GFP -18 Kanr, Ampr

DVM90 50 msfGFP Kanr, Ampr

effects, we used the 40 nm diameter scaffold fused two 2 additional GFP charge variants, +15e [66] and −18e (developed for
this study, see §S0 in SI and Fig. S4.c) resulting in three bGEM charges with total particle charge: −2160,−840 and +1800e.

Bacterial sample preparation
All cells were grown in EZ-rich media [67]. For the stationary phase experiments, cells were grown from frozen in the shaker
at 37 ◦C for roughly 20 hours. Then 100 µL aliquots were prepared with 1 µL of 0.5 mg/µL WGA 405(S) cell-surface
fluorescent label and incubated for an additional 30 minutes to an hour shaking at 37 ◦C. For stationary phase experiments
the use of induction was not required to achieve the desired bGEM assembly. For exponential phase experiments cells were
grown overnight until stationary phase. Then, the cultures were back-diluted 1:100 in EZ-rich media and grown in the shaker
for 1 hour at 37 ◦C. This short incubation time was enough to reach early exponential phase but still preserve the bGEMs
that formed during the long overnight culture. At this point 100 µL aliquots were prepared with 1 µL of 0.5 mg/µL WGA
405(S) membrane stain. For the 20nm bGEMs 1 µL of 100 ng/mL anhydrous tetracycline was added for bGEM induction. The
aliquots were then incubated for an additional 30 minutes shaking at 37 ◦C. For all imaging experiments, 1.5% agarose pads
were prepared with the corresponding nutrient conditions. For exponentially growing cells pads were made with EZ-rich media.
In the case of stationary phase cells, we used M9 media without a carbon source. Pads were made using a tunnel slide. For all
growth conditions, 1 µL of cells was placed in each imaging pad and allowed to dry. The samples were then covered with a
coverslip and sealed with Valap (1:1:1 mixture of vaseline, lanolin and paraffin).

Imaging
All single particle tracking microscopy was performed with a custom built biplane wide-field illumination microscope (Fig. S5
for optical diagram). Images were obtained using a 1.49NA 100x Nikon objective and 2x optical magnification, and captured
with an Andor EM-CCD camera. The setup includes bright field illumination and 3 colors for epifluorescence: 405 nm, 488
nm and 561 nm. To enable 3D tracking, we use a biplane module consisting of a mirror and beam-splitter (see §S1 in SI for
more details). The optical distance between the two focal planes is ≈ 525 nm. All imaging was performed at room temperature
(23.3 ◦C), controlled to 0.5 ◦C. Samples were imaged from the bottom through a coverslip, using oil matched to the diffraction
index of glass. An exposure time of 30 ms was used for all samples except for the 20-nm bGEMs, which required an exposure
time of 100 ms due to decreased particle brightness. Each datapoint in the experiments consists of 3 channels. A red channel
with a nucleoid z-stack, a blue channel with a membrane z-stack and a green channel movie with 500-1000 frames of bGEMs
motion inside the cell (SI Movie 2). All z-stacks consist of 40 steps spaced by 100 nm, with the stack center corresponding to
equal focus on both biplane images. A sample data set with 3 timeframes is shown in Figure 1. Notice how each image seems
duplicated at the top and bottom. This corresponds to the two biplane images produced in the same camera chip. All images
were analyzed to determine the xyz positions of the particle at each timeframe using a custom built image analysis pipeline in
Matlab[68]. Further details of the optical setup and image processing can be found in §S1 in SI.

Negative stain transmission electron microscopy for 50nm GEMs
50 nm GEMs were purified as described in [55]. Purified particles were deposited on carbon-coated 400 mesh copper/rhodium
grids (Ted Pella Inc., Redding, CA), stained with 1% aqueous uranyl acetate, examined in a Philips CM-12 electron microscope
and photographed with a Gatan (4k x2.7k) digital camera.

MSD calculations and corrections
Ensemble-average MSDs were calculated using custom code developed in Matlab and Python. Experimental static and dynamic
localization errors, lead to artifacts in the shape of experimental MSD curves in the log-log scale. The static localization error,
has a pronounced effect in our unprocessed MSDs, causing the curves to appear highly sub-diffusive for early time points when
plotted in a log-log plot (Fig. S10). To correct for these errors we fitted our MSD data with a model that accounted for both
types of errors [69], and subtracted the static localization error from the MSD data to obtain the plots in fig. 4. Additional
details are descibed in §S2 in SI.
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Simulations
Whole-cell colloidal simulations
We constructed a coarse-grained whole-cell model of E. coli (Fig. 1(c)) using the massively-parallelized molecular dynamics
package LAMMPS [70]. Each simulation included a spherical confining cell membrane and approximately 30,000 spherical
particles representing a porous nucleoid and a polydisperse cytoplasmic milieu of positive and negative native cytoplasmic
crowders (to capture crowding effects from proteins, tRNA, transcription factors, ribosomal subunits, etc.), ribosomes,
polysomes, and GEMs.

We chose the radii of the nucleoid region to be 200 nm to reflect the average values measured in our experiments in E.
coli. The nucleoid was constructed via a random self-assembly process, forming an interconnected network of polydisperse
DNA beads with average radius aDNA,i = 7nm. The self-assembly process can be tuned to produce a network structure that
recovers the nucleoid morphology measured in experiments. For more detail, please see §S4 in SI and Figure S11. The radius
of the cell was chosen to be 383 nm to match the relative nucleoid to cell volume of 0.39. Macromolecular abundances were
determined to represent physiological data of stationary phase E. coli in rich growth media [51, 52, 53, 41, 54] (see Table S5)
and the resulting volume fraction of the cell was φ = 0.31. The position of macromolecules inside the cell membrane and
interpenetrating or surrounding the nucleoid was initialized in Packmol [71].

In our model, macromolecular interactions were represented with a hard-sphere [72] Debye-Hückel [42] potential, where
each pair of molecules experiences entropic exclusion and screened electrostatic attractions or repulsions that depend on their
relative charges (Fig. S13). These coarse-grained interaction potentials were previously derived from and parameterized by
all-atom simulations [42]. In addition to these pairwise forces, DNA beads and ribosomes that are a part of the same polysome
interact via a harmonic bond potential. Confinement is enforced via a harmonic force that acts in the radial direction if a particle
attempts to move outside the enclosure.

Following equilibration, we ran dynamic simulations and measured the MSD and nucleoid occupation time of GEMs.
The timestep was chosen to be 42ps to maintain inertia-free dynamics. Simulations were evolved for 3.4ms, with particle
trajectories output every 0.8 µs. Visualizations of the model were created using Visual Molecular Dynamics (VMD, [73]). For
more details with regard to the colloidal whole-cell model, please see §S4 and §S5 in the SI.

Probabilistic simulation of an excluded volume nucleoid
In this type of simulation, particles are randomly instantiated in different regions of the cell. The particles perform a random
walk drawing displacements from a Gaussian distribution as permitted by boundary conditions which enforce confinement
within the spherocylindrical cell and entry/exit probabilities into and out of the nucleoid. Simulation parameters including cell
and nucleoid shape and size, diffusivity, and nucleoid occupation fractions were obtained from experiment-based measurements
and outputs from the whole-cell colloidal model. See §S6 in SI for additional details.
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Supporting Information Text

S0. bacterial Genetically Encoded Multimeric nanoparticles

bGEMs characteristics and design. GEMs self-assemble inside the cell from multiple sub-units coming together in fixed
stoichiometries to form monodispersed icosahedral particles [1]. These sub-units are protein complexes consisting of a protein
scaffold and a fluorescent protein (FP) linked together (Fig. S4.A). The scaffold protein determines the size of the assembly, and
the resulting particle is fully coated by the fluorescent proteins. Thus all interactions between the GEM and the environment
occur through the FPs. The scaffold proteins originate from hyperthermophilic archaea and bacteria that are vastly different
from E. coli minimizing the risk of biological interactions. To develop the new 50 nm GEM we used scaffolding domains
based on the encapsulin protein from the hyperthermophilic archaea Vulcanisaeta distributa [2]. Using negative stain electron
microscopy, we measured a radius of 25.03 ± 0.52 nm. (Fig. S4.B). The 50 nm particles were originally conceived for research
in eukaryotes, and were synthetized following the steps described in [1]. In brief, the Vuldi encapsulin was synthesised with an
IDT gene block and codon-optimized for eukaryotic expression. Gibson cloning was used to introduce the encapsulin into a
yeast expression plasmid after the INO4 promoter. A Sapphire fluorescent protein was fused at the C-terminus.

Particles are expressed through a low copy-number plasmid with an anhydrous tetracyclin (aTet) promoter. We replaced
the original t-sapphire fluorophore in [1] with msfGFP for all three size variants (20, 40 and 50 nm). For the 40nm particles
we used 2 additional fluorophores to vary the total charge of the GEM, GFP +15 from [3] and a new GFP -18 flurophore
developed here. We sequenced every charge variant to verify the charge of the constructs. We determined the charges from the
sequence data using ProteinCalculator V3.4 (https://protcalc.sourceforge.net/). The size variants are all coated with standard
msfGFP of charge -7e, making them close to neutral in terms of their electrostatic interactions. The total charge of a particle
corresponds to the charge of the individual GFP multiplied by the number of subunits making up the particle, e.g. for the 40
nm “neutral" particle the total charge is -7e·120 = -840e. Thus, for our charge analysis we used three charge variants of the 40
nm sized particles: -2160e (GFP -18e), -840e (msfGFP -7e) and +1800e (GFP +15).

Strains construction. All the plasmids developed for this study were constructed using the Gibson Assembly [4] kit (New
England Biolabs, MA). For the plasmid pDVM1, containing PFV-msfGFP, the PFV gene (40 nm particle scaffold) was amplified
from pLHC611-pcDNA3.1-Pfv-Saphire [1] using primers DVMO3 and DVMO22, the msfGFP gene was amplified from NMP158
[5] using primers DVMO20 and DVMO21. The two genes were fused in frame and inserted into the pEVS143 [6] backbone,
an expression vector containing an anhydrous tetracycline promoter and kanamycin resistance cassette. pDVM1 was used as
the backbone to construct the other plasmids used in this study. We used primers DVMO37 and DVMO38 to amplify the
backbone around the PFV gene to replace the scaffold and the primers DVMO43 and DVMO44 to amplify the backbone
around the msfGFP gene to replace the fluorophore. For the plasmid pDVM16, containing AqLS-msfGFP, the AqLS gene (20
nm particle scaffold) was amplified from pLH1426-pRS305-PIN04-AqLS [1] using primers DVMO39 and DVMO40, and inserted
into the pDVM1 backbone, replacing the PFV gene. For the plasmid pDVM26, containing Vuldi-msfGFP, the Vuldi gene (50
nm particle scaffold) was amplified from pLH1426-pRS305-PIN04-Vuldi (this study) using primers DVMO41 and DVMO42,
and inserted into the pDVM1 backbone, replacing the PFV gene. For the plasmid pDVM30, containing PFV-GFPPOS15, the
GFPPOS15 gene was amplified from pET-GFP-POS15 [3] using primers DVMO45 and DVMO46 and inserted into the pDVM1
backbone, replacing the msfGFP fluorophore. For the plasmid pDVM34, containing PFV-GFPNEG18, the GFPNEG30 gene
was amplified from pET-GFP-NEG30 [3] using primers DVMO45 and DVMO46 and inserted into the pDVM1 backbone
inserted into the pDVM1 backbone, replacing the msfGFP fluorophore. Upon sequencing a big sequence mutation in the GFP’s
sequence was discovered, with the charge of the actual fluorophore corresponding to -18 e instead of -30 e. The mutation
occured during cloning as the GFPNEG30 sequence was verified by sequencing. See figure S4.C for full GFPNEG18 amino acid
sequence. Fluorescence of the new fluorophore was adequate and bGEM particles assembled correctly without clumping.

The plasmids were electroporated into S17 cells and selected on kanamycin plates, the resulting plasmids were verified
by sequencing and then transformed into MG1655 using TSS transformation. Adequate particle formation was checked by
fluorescence microscopy. Additional to the bGEMs plasmids, a second plasmid (pSACT101 Ampr) expressing a protein fusion of
the nucleoid associated protein (NAP) HU-alpha labeled with mRFP1 was transformed into the cells using TSS transformation
and verified for resistance to ampicillin. Fluorescence microscopy was used to verify correct nucleoid labelling, with a Vybrant
DyeCycle Violet Stain [7] (Invitrogen) as a control. Tables S3 and S4 summarize the primers and strains used in this study.

S1. 3D single particle tracking using biplane microscopy

Single particle tracking (SPT) consists of successive detection and localization of a particle over a sequence of timeframes.
These particle positions are then stitched together to form trajectories [8]. In this work we used biplane microscopy for 3D-SPT,
here we provide details regarding the experimental setup and the image analysis pipeline.

Custom built biplane microscope. All imaging was performed with a custom built biplane wide-field illumination microscope. A
simplified optical diagram of the microscope is shown in figure S5. To enable 3D tracking, we use a biplane module consisting
of a mirror and beam-splitter. The module is placed just before the camera, as shown in figure S5. When the light from the
sample reaches the beam splitter, 50% of the light travels straight through the beam splitter and focuses in the bottom half of
the camera (bottom plane), while the other 50% of the light is diverted by the beam splitter, reflecting off the mirror and into
the top half of the camera (top plane). Thus the light deflected by the beam splitter travels a longer optical path length than
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the light that continues straight. This results in two images of the same object at different focal planes obtained simultaneously
in the same camera chip. The optical distance between the two focal planes is ≈525 nm. In the following sections we’ll refer to
the biplane images as planes.

Experimental PSF determination. The experimental measurement and processing of the PSF was obtained following a procedure
similar to those described in [9, 10]. In brief, we imaged 100 z-stacks of 40 nm carboxylated beads using the biplane setup,
with a range of ±2µm around the best overall focus for both planes, resulting in thousands of images of the PSF. We applied a
bandpass filter, to remove fast and slow varying noise from the images. Then the coordinates corresponding to the center of
each bead in xy were identified for both top and bottom planes. Two sets of z-stacks (top and bottom) were extracted for each
bead using a 9x9 box around the xy position of the bead in each plane. The resulting stacks were summed for all beads to
obtain a top and bottom calibration PSF. Gaussian filters were then applied to the calibration stacks with σ = 1 pixel in xy
and σ = 2 pixels in it. Finally, the resulting top and bottom PSFs were normalized.

Image analysis pipeline

All software used for image analysis was custom developed in Matlab [11] and is available in GitHub (PrincetonUniversity/shae-
biplaneMicroscopy-public) . The input of the pipeline consists of the membrane, nucleoid and GEM channels. For the membrane
and nucleoid we selected an average of the stack slices with the best focus on the bottom plane. The nucleoid and membrane
channels are used for cell segmentation and background subtraction, while the GEM channel is used for tracking. A sample
data set is shown in figure 1 of the main body of the paper.

To map the images corresponding to the two planes, we use a thin plate spline (TPS) [12]. Once this mapping was found,
we added the two sub-images together to create a composite image from the two separate focal planes (S6.A). This composite
image was used for the xy peak detection. Before peak detection two important pre-processing stages were performed: cell
segmentation and background subtraction. (Figures S6.B and S6.C).

Cell segmentation and background subtraction. Because of the high density of cells in a typical image, cell-segmentation
was important for analyzing individual cells. For this task we use a multi-stage approach, consisting of a user based manual
segmentation followed by an automated fitting algorithm. In the manual stage, the user selects cells containing GEMs by
drawing a 4-sided polygon around the desired cell using a custom built GUI in Matlab. Then, the list of manually segmented
cells and their coordinates are fed to an automatic segmentation algorithm. The algorithm iterates over all the cells selected by
the user. First, it generates a mask from the user’s coordinates (user’s mask). Next, in the case of stationary cells, the nucleoid
image is masked to keep only the nucleoid of the cell of interest. Nucleoids are then segmented using edge detection (Fig.
S11.A) and dilated by 2 pixels to create and approximate cell outline. This rough outline is then characterized by measuring
the cell’s approximate size, orientation and center location. These parameters are used as a starting condition for cell fitting.

Figure S7 shows an example of the fitting pipeline. In the cell fitting stage the composite image is cropped around the
cell of interest using the user’s mask (S7.A). Using the parameters found from the nucleoid characterization, the cropped
image is fitted with a ”blurry" rectangular mask using least squares. The rectangular mask is blurred by a σ = 1 pixel
2D-Gaussian to simulate the effects of diffraction as shown in S7.B. Then, a sphero-cylindrical mask is constructed based on
the fitted parameters. Figure S7.C shows the binary sphero-cylindrical mask convolved with a σ = 1 pixel Gaussian filter.
For exponentially growing cells, instead of using the nucleoid as described above, the user draws a mask using the membrane
images and the fitting is performed on this mask as described above.

One of the major challenges encountered during peak detection was the presence of a strong background signal coming from
free (un-assembled) GFP-scaffold sub-units diffusing in the bacterial cells. The best way of improving the SNR in this scenario
is to remove the background to enhance the signal from the particles. We assume a uniform distribution of fluorophores in the
spherocylinder and use this knowledge to subtract the intensity of these particles from the image. In the case of the xy peak
finding the background subtraction is simple. In brief, the fitted sphero-cylindrical binary mask is convolved with a gaussian
kernel of σ = 1 to simulate a uniform background blurred by diffraction (masksp−cyl) and the fitted cell is subtracted from the
cropped image GEM channel (Imin) according to equation 1,

ImbckSub = Imin − γ · masksp−cyl · Imin, [1]

where γ ∈ [0, 1]. For our images γ = 0.6 yields the best results. The result is a background subtracted cell ready for xy peak
detection (S7.D).

Figure S8 shows localization error histograms for simulated images with and without implementing the background
subtraction algorithm. There is a considerable decrease in the localization error for the background subtracted images. The
improvement in localization error is more significant in the y-axis because the background noise biases particle localization
towards the center of the cell. Implementing background subtraction before the peak finding stage gives localization uncertainties
of σx ≈ 57 nm and σy ≈ 68 nm for simulated images with high noise, similar to the noisiest imaging conditions we observed in
our data. These errors are consistent with experimental localization errors (table S2).

For the z background subtraction, the algorithm is more complex, and requires prior peak detection in the xy plane as
described below. For the first five frames in the movie we execute the following algorithm. First, rotate the cell to align the
long axis with the x-axis. Then normalize the two biplane sub-images by the max intensity in the movie for each plane. Then
convolve the top and bottom planes of the image with their respective PSFs. We will call the resulting images from these

Valverde-Mendez, Sunol et al. | 3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.587083doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587083
http://creativecommons.org/licenses/by-nc/4.0/


convolutions cBotIm and cT opIm. Next we create a composite image for z background subtraction by doing the following
weighted sum of the two image planes,

cF ullIm = (1 − xtemp) · cBotIm + xtemp · cT opIm. [2]

The weighing factor xtemp depends on the intensity ratio between the top and bottom planes for the most likely candidate
particle found in the frame during the xy peak finding stage (xInt = intT opP eak/intBotP eak),

xtemp = xInt − minIratio

maxIratio − minIratio
, [3]

with minIratio and maxIratio corresponding to the minimum and maximum intensity ratios calculated from all the candidate
particles in the movie.

Once we obtain this weighted composite image we then re-slice along the y-coordinate of the top candidate particle in the
frame. This xz re-slice is fitted using least squares to find the optimal background subtraction, given the sphero-cylindrical
nature of the cell. For the fitting step we create a template image by approximating the re-sliced sphero-cylinder to a rectangle.
We place 2 rectangles centered at the focus of each biplane plane. Then the rectangles are convolved with Gaussian filters to
match the convolved data. The fitting optimizes the size of the rectangles and the center of each rectangle, the intensity of the
rectangles and the width of the convolved Gaussian. Once all five frames are done, the resulting fitted background images
are averaged to obtain the fitted top and bottom background in the xz plane. These images are subtracted from the top and
bottom planes during z-peak finding to improve localization accuracy.

xyz particle localization. For xy particle localization we used a 2 stage peak finding algorithm. In the first stage, we detected
the brightest pixel in a window size of 15 pixels. A list of the peaks is then used in the second stage, where an intensity
Gaussian is fitted to each of the peaks to find the center of the particle with sub-pixel resolution. When the fit fails, the
algorithm returns the center of mass of the peak instead.

Once candidate particles are found using xy peak detection, we are able to determine the particle’s position along the z-axis.
For this purpose we developed a new localization algorithm. This algorithm is robust to differences in SNR between different
bacterial strains, and performed better than other algorithms, such as calibration curves, for our noisy data set.

In our approach, each plane’s image is convolved with its respective PSF to obtain a 3D stack for each timeframe. These
stacks are then reshaped by slicing through the y-coordinate of the candidate particle to obtain a xz projection of the data-stack
at the plane of best focus in y. Background subtraction (as described above) is performed on these xz projections to reduce
background noise and entered at the x-coordinate of each candidate peak. We then extract z-slivers (10x1 pixels) of data
for both top and bottom planes. Next, we fit a 1D-Gaussian distribution to the intensity profile of these slivers to find the
sub-pixel localization of the particle in each plane. We then implemented a weighted sum to add these coordinates together.
To determine the weighing factor we used a modified version of the Vollath 5 autofocus algorithm [13],

voll5 =
M−1∑
i=1

N∑
j=1

g(i, j) · kij − MNḡ2, [4]

where g corresponds to the intensity matrix of the peak (pixels) of M rows and N columns. kij is given by

kij =
{

ki+1,j = g(i + 1, j) if voll5i+1 > voll5j+1
ki,j+1 = g(i, j + 1) if voll5i+1 < voll5j+1,

, [5]

where voll5i+1 and voll5j+1 are the result of calculating voll5 with ki+1,j or ki,j+1 respectively. The calibration parameter c.p.
is given by the log-ratio of the Vollath 5 function applied to both biplane images,

c.p. = log

(
voll5bot

voll5top

)
. [6]

The Vollath 5 autofocus algorithm is ideal to determine the particle’s z position due to it’s high sensitivity to changes
in position and it’s large operating range. However, it is also sensitive to the background noise of the image. Therefore the
weighing parameter used to sum the particle’s locations from each plane had to account for the SNR of the candidate particle
throughout the movie. This consideration is important because each type of GEM has its own intensity and noise profile so
that the expected SNR range for each data set varies considerably.

The SNR was incorporated as follows. If we denote the particle’s localization in each of the planes as ztop and zbot, then the
particle’s z-position, posZ, is given by the weighted sum,

posZ = (1 − mult) · ztop + mult · zbot [7]

as exemplified in fig S9. The weighing parameter mult is given by the linear equation,

mult = m · c.p. + b ∈ [0, 1], [8]
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with slope m = 0.8
(maxLD−minLD) and intercept b = 0.9 − m · maxLD. maxLD and minLD correspond to the maximum and

minimum values expected for the c.p. given the SNR of the movie.
To determine the expected range for c.p. for a specific GEM given a movie’s SNR, we calculated the maximum SNR and the

c.p. range [minLD, maxLD] for both planes for all the trajectories in the data-set, and empirically determined the following
relationships:

maxLD = a1maxSNRtop + b1, [9]
minLD = a2maxSNRbot + b2, , [10]

where the fitting parameters a1, a2, b1 and b2 were determined by applying linear fits to maxLD = maxLD(maxSNRtop) and
minLD = minLD(maxSNRbot). Using equations 9 and 10, we are finally able to determine the range [minLD, maxLD] for
a given particle trajectory by calculating the SNR for each plane. The maximum SNR is calculated as maxSNR = maxInt

avgInt
,

where avgInt corresponds to the mean pixel intensity in the bacterial cell and maxInt is the maximum intensity of the particle
throughout the movie. The intensity of the particle is defined as the sum of all the pixel intensities in the window. A graphical
representation of the convolution tracking algorithm is shown in figure S9.

Trajectory stitching. Once the peak finding step is concluded it is time to stitch the trajectories together. To simplify tracking
and stitching, we chose to work with cells that had only one GEM. This allowed us to write custom code that takes into
account this information to build a trajectory throughout every frame in the movie. We developed two versions of the stitching
algorithm, and for each cell we selected which of the two algorithms performed better by visual inspection. The first algorithm
is a simple distance minimization. For each frame, candidate particles are tested to see which one will result in the smallest
overall displacement based on an Euclidean distance metric (previous frame to current + current frame to next), if the overall
displacement for a particular frame is too large, a NaN value is returned for that frame. Thus a vector is stitched for each
possible starting position (if there is more than one) and the vector with the smallest trajectory length is chosen as the
particle. Sometimes when using this algorithm the particle gets lost and the resulting trajectory is wrong from a certain point
on-wards. To solve this problem, we developed a second algorithm. The overall functionality is very similar, however the main
difference is that likely particles are found first, by selecting the 20 % brightest candidate peaks corrected for bleaching, and a
trajectory vector is seeded with these probable particles. Then, frame by frame distance is minimized, using the seeded points as
“anchoring” points. Depending on the noise conditions of the image, usually one of the two algorithms will perform better. Once
we have preliminary trajectories (constructed with either algorithm), we interpolate to fill in any gaps. After the trajectories
are finalized we do a manual correction of trajectories through a custom built GUI to eliminate any miss-localizations and bad
stitches. The resulting trajectories are symmetrical in the yz plane and appear unbiased. Finally, all trajectories were visually
inspected to discard any bad trajectories (asymmetric, with lines of data along edges, etc) resulting from experimental errors,
such as imaging out of focus or bad peak localizations.

Intensity outliers removal. After the trajectories are stitched together we plot the intensities of the GEMs as a function of
z-position to remove any outliers. These outliers usually correspond to out-of-focus movies or too-bright particles that are likely
clumps formed by several GEMs. The GEM intensity is determined by approximating the PSF in the z-axis as an intensity
Gaussian with amplitude A0 given by

A0 = Ae
− (Z−z0)2

σ2 , [11]
where A is the total measured intensity of the peak at a particular Z-coordinate of the PSF. The standard deviation σ and
offset z0 are fitted from an experimental PSF obtained from 50-nm bead z-stacks. Using these equations, we obtain two
approximations for the GEMS intensity from the two PSF intensities (A±) sampled by the biplane. With z± = Z ± ∆z

2 , where
∆z is the optical distance (≈ 525 nm) between the two image planes.

S2. MSD corrections and fitting

Consider the general expression for the MSD of a diffusive process,

MSD = Aτα. [12]

This expression is idealized assuming no measurement errors. However, in any single particle tracking experiment, the
measurements will be subject to 2 main types of localization error. A static localization error and a dynamic localization error
[14].

The static localization error, σ, arises from errors in estimating the center of the PSF and depends on the number of photons
available to localize the particle. It is approximately given by [14],

σ ≈ 4
3

s√
N

, [13]

where N is the number of photons per pixel and s is the standard deviation of the PSF. The static localization error increases
with noise.

The static localization uncertainty adds a factor of 2σ to the experimental MSD as shown below,

MSD = Aτα + 2σ2. [14]
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When plotting the MSD in a linear scale this error reflects in a shift of the total curve upwards, however if the MSD is plotted
in a log-log scale, the resulting curve appears to be sub-diffusive for the smaller time lags [15]. This effect is clearly visible in
figure S10.

The second type of localization error is dynamic localization error, which can be thought of as a blurring error resulting
from imaging for a finite exposure time tE . During the time the camera is acquiring photons, the particle is moving and thus
this results in the motion of the particles appearing to be ballistic or super-diffusive for the earlier time lags [16]. Unfortunately,
the effect on the MSD is considerably more complicated than the effect of the static error as described by Savin and Doyle [16],

MSD = Aτ2+α

(1 + α)(2 + α)t2
E

((
1 + tE

τ

)2+α

+
(

1 − tE

τ

)2+α

− 2
)

− 2Atα
E

(1 + α)(2 + α) + 2σ2. [15]

The last term in this equation corresponds to the static localization error.
For our MSD analysis we fit our curves to equation 15 to obtain an estimate for this static localization error (table S2). We

then subtracted this error from the MSDs to remove the apparent sub-diffusion in the log-log scale plots, this is shown in figure
S10. Notice that for the earliest time lags the dynamics appear to be diffusive, this is the effect of the dynamic localization
error on the sub-diffusive trajectories. From the fit, we determined that α ≈ 0.75 for the larger particles and α ≈ 0.45 for the
20-nm particles.

S3. Determining nucleoid occupation time

To calculate the nucleoid occupation time we developed custom code in Matlab. For each cell, we segmented the nucleoid from
the DNA label z-stack as follows. First, we selected the stack with the best focus of the nucleoid, and then applied an edge
detection using the built-in-edge function in Matlab. We used the ‘log’ method for the edge detection function which detects
edges by looking for zero-crossings after filtering the image with a Laplacian of Gaussian (LoG) filter [17]. The detected outline
is then shrunk by 1 pixel, to account for the blurring from diffraction. The resulting outline is taken to be the shape of the
nucleoid in both the xy and xz cross-sections. We then check the trajectory points, to determine if they fall inside or outside
the polygon surrounded by the nucleoid outline. Finally the points are classified as inside the nucleoid if they are inside both
the xy and xz cross-sections. Figure S11 shows an example of the nucleoid segmentation (A) and the points classification (B).

S4. Colloidal whole-cell model details

Determination of size and abundances of cellular components and macromolecules. We chose the radii of the nucleoid region to be
200 nm to reflect the average values measured in SPT experiments in E. coli. We constructed a nucleoid via a random self-
assembly process, forming an interconnected colloidal dispersion out of polydisperse spheres of average radius ⟨aDNA⟩ = 7 nm.
The self-assembly process can be tuned to produce a network structure that recovers the nucleoid morphology measured in
prior experiments [18] (Fig. S12). A volume fraction of ϕn = 0.10 was chosen based on the DNA density at rapid growth
conditions prior to entry into stationary phase, and the homogenized nucleoid structure, self assembled by isotropic particles
interacting with a hard-sphere Morse potential of depth 10kT , was found to more closely reproduce dynamics and localization
from the experiments in the present study, perhaps due to changes in nucleoid morphology upon entry into stationary phase.

The self-assembled porous network was shaved into a spherical shape and placed in the center of the confined domain.
The radius of the cell was chosen to be 383 nm to match the relative nucleoid to cell volume of 0.39, which was determined
from experimental images of the stationary phase cells (see Sec. and ). Freely-diffusing macromolecules in the cytoplasm
were packed into the remaining volume, until the total occupied volume fraction reached ϕ = 0.31. The overall and relative
abundances of ribosomes and non-ribosomes prior to entry into stationary phase were taken from reported values for E. coli
growing at a doubling rate of 3 dbl/hr [19], which was the growth rate of the E. coli prior to entry into stationary phase.
While there are no explicit measurements for relative ribosome and protein concentrations in stationary phase E. coli, we
used numerous quantitative reports of degradation of macromolecules in E. coli to estimate cellular crowding after entry into
stationary phase. The total amounts of ribosomes and other native macromolecules, which we term crowders, were hence
determined by adjusting for degradation of 50% of ribosomes [20] and degradation of 20% of proteins [21] upon entry into
stationary phase. 40% of ribosomes which are made up of ribosomal proteins were added to the total crowder abundance since
ribosomes degrade into proteins and rRNA, whereas the rRNA that make up the ribosomes was not added to the cellular
crowding since it was shown to degrade upon entry into the stationary phase [22].

We thus included 19,160 positive and 5,227 negative crowders of radius acrowd = 7 nm to reflect the relative abundance and
charge of proteome in the E. coli cytoplasm [23]. Crowders were added to the model to increase overall effective crowding
which comes from not only individual proteins but also tRNA, ternary complexes, polymerase, ribosomal subunits, and other
macromolecules in the cell. The size of 7 nm was chosen because it was determined that this size is sufficient to induce size-based
demixing when paired with larger macromolecules like ribosomes [24]. We also included 2,931 ribosomes of size arib. We
represent 20% of ribosomes as part of polysomes – linear chains of six ribosomes [25] – to reflect abundances translating
ribosomes in stationary phase E. coli [26, 27]. In each simulation, we place 50 GEMs of size aGEM = 10 nm, 20 nm, and 25 nm,
as in the SPT experiments. This number was chosen as it provides adequate statistics for localization and MSD but is low
enough such that we observe no clustering of GEMS in our simulations. All parameters used in whole-cell model construction
can be found in Table S5.
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Macromolecular interactions. A pair of molecules i and j can interact in the whole-cell model via entropic or electrostatic
components, defined by the potential:

V (rij)
kBT

=

Vent = 6
(

1 − e−60(rij −σij)
)2

− Aijκ−1 if rij ≤ σij

Velec = − Aij

κrij
e−κ(rij −σij) if rij > σij ,

[16]

where rij is the magnitude of the vector pointing from the center of particle j to the center of particle i, kB is the Boltzmann
constant, and T is the absolute temperature. Entropic exclusion is enforced via a Morse potential, Vent, which has been
previously demonstrated to recover hard-sphere behavior [28]. The hard-sphere contact distance σij is defined as the sum of
the particle radii, ai and aj (see Table S5).

We modeled electrostatic interactions via a Debye-Hückel potential [29], Velec, where κ−1 is the Debye length that sets the
range of the screened electrostatic interactions. In our model, we chose a value of κ−1 = 2.2 nm, as estimated in the E. coli
cytoplasm [23]. The strength of the electrostatic attraction or repulsion Aij is calculated for each pair i, j, according to their
charges:

Aij = Ai Aj , where Ai = sign (qi)
√

3
4qi,eff , [17]

qi is the nominal charge, and qi,eff = sign (qi) · 0.6
√

|qi| · log
( |qi|

2 + 1
)

is the effective charge of molecule type i. These coarse-
grained electrostatic interaction potentials were derived from and parameterized by all-atom simulations; for more detail please
see [29]. In our model, pairs thus experience either electrostatic attractions or repulsions depending on their relative charges
(Fig. S13). To match experimental conditions, we simulated three types of charged GEMs, where individual GFP monomers
have charges of −18e, −7e, and +15e. With 120 monomers per GEM, the total GEM charges are qGEM = −2160e, −840e, and
+1800e, respectively. The 20 nm particles have a charge of −420e and the 50 nm particles were assumed to have a charge of
−1050e We assumed each ribosome has a total charge qrib = −3966e, as calculated for M. genitalium ribosomes in [29]. Each
DNA bead has a charge qDNA = −616e, corresponding to a surface charge density of −150 mC/m2 = −1e/nm2 [30]. We set
the charge of positive native crowders to be qcrowd,pos = +34e and negative native crowders to be qcrowd,neg = −70e based on
charge densities of 0.056e/nm2 and −0.114e/nm2, respectively. These charge densities reflect the average value for positively
and negatively charged proteins in the E. coli proteome [23].

Neighboring ribosomes within polysomes – linear chains of six ribosomes each – were connected by a harmonic bond of the
form:

Vbond(rij)
kBT

= K(rij − r0)2, [18]

where K = 50 sets the bond stiffness and r0 = 1.08 σrib sets the equilibrium bond distance beyond hard-sphere contact, which
prevents frequent steric encounters between neighboring ribosome beads. Polymeric dynamics were enforced for the DNA with
a harmonic bond as well, with a bond stiffness of K = 200 and r0 = 1.0 σDNA. DNA monomers interact with their bonded
neighbors only via the stiff harmonic potential, but interact with other molecules enthalpically and entropically.

Spherical confinement was enforced for all macromolecules i with a harmonic force of magnitude F C(ri) that acts inwards
in the radial direction:

F C(ri) = −K(ri − Rcell − ai)2, if ri > Rcell − ai, [19]

where K = 10 and ri is the distance of the molecule from the center of the cell.

Dynamic simulation. The motion of each particle, both the DNA beads and the freely diffusing cytoplasmic molecules, is governed
by the Langevin equation, which is a stochastic force balance, given by:

m · dU
dt

= FH + FB + FP , [20]

where m is the mass tensor, U is the particle velocity, FH is the hydrodynamic force, FB is the stochastic Brownian force, and
FP are forces resulting from particle-particle or particle-boundary interactions.

The hydrodynamic drag on each particle is approximated by the freely-draining limit, meaning the force is calculated using
Stokes’ drag law:

FH
i = − 6 π η ai Ui. [21]

The stochastic Brownian force arises from thermal fluctuations and obeys Gaussian statistics:

FB
i = 0

FB
i (0) FB

i (t) = 2kT (6πηai) Iδ (t) ,
[22]

where k is the Boltzmann constant, T is the absolute temperature, η is the solvent viscosity, ai is the particle radius, I is the
identity tensor, and δ(t) is the Dirac delta function. The overbar considers averages over times that are long compared to the
solvent molecule timescales. The interparcle and particle-cavity forces are given by the gradients of the interaction potentials
described in described in Section .
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Initial configurations for the simulations without GEMs were generated using the software Packmol [31], and the system was
equilibrated until a steady-state value was reached for the volume fraction of each species inside versus outside the nucleoid.
Following the first equilibration, GEMs were added with the probability of being inside versus outside the nucleoid being
determined by experiments. Before data was collected, a second equilibration, this time with GEMs, was performed until
GEM localization reached a steady state. The timestep was chosen to be 42 ps to maintain inertia-free dynamics. Simulations
were evolved for 3.4 ms, with particle trajectories output every 0.8 µs. Visualizations of the model were created using Visual
Molecular Dynamics (VMD, [32]).

S.5 Colloidal simulation analysis

We calculated the probability distribution function of void segment widths in our self-assembled colloidal gel nucleoid using a
radical Voronoi decomposition method developed in our group [33]. We used this method to compare the structure of the
model porous network to experimental visualizations of the E. coli nucleoid under different conditions (Fig. S12), and compute
the fraction of the void distribution accessible to molecules of a given size (Fig. 2D).

To compute the nucleoid occupation likelihood, tnucl/ttot, in simulation, we measured the fraction of GEMs located inside of
the nucleoid at each time point and averaged this value over 1.2 ms following equilibration. Please see S3 for details regarding
how nucleoid occupation was obtained in experiments.

We monitored dynamics of GEMS by tracking particle positions throughout simulation and computing their mean-square
displacement (MSD) over time

MSDGEM = ⟨∆xGEM · ∆xGEM⟩, [23]
where ∆x = x(t) − x(0) is the change in particle position from the initial time to the current time t. Angle brackets denote an
ensemble average over all GEMS. We compare dynamics inside versus outside the nucleoid by separating individual particle
trajectories into two different groups: trajectories that take place inside versus outside the nucleoid.

To quantify GEM-macromolecule binding, we calculated the number of molecules of type i to which each GEM was bound
– its coordination number – and computed the distribution of contact numbers across the GEM ensemble. A GEM, j, is
considered bound to a molecule, i, if their hard sphere surfaces are within 1 nm of contact. We calculated contact number
distributions for all other molecules i: ribosomes, DNA, and positive and negative crowders (Fig. S14 S14). Using this data, we
calculated mean coordination number between a GEM and each molecule type and normalized this by the mean coordination
number for a GEM with no net charge (Fig. 3d).

S6. Probabilistic simulation of excluded volume nucleoid

Long-time probabilistic simulations of GEM diffusion were performed to explore the roles of confinement and geometry on
anomalous diffusion. In these simulations, the shape of E. coli was modeled as a cylinder with spherical caps, while the nucleoid
was modeled as a smaller cylinder at the center of the cell. Previous methods employed to generate coarse-grained random
walks in E. coli involve either complete exclusion from the nucleoid [34] or homogeneous diffusion within the entire cell [35].
We expand these approaches to be able to incorporate heterogeneous diffusion (different diffusion coefficients in the nucleoid
and in the nucleoid-free region) and non-uniform entry/exit probabilities from the nucleoid, which enable us to reproduce
nucleoid dwelling times from the experiments.

Each GEM has a volume normalized tendency to be inside or outside the nucleoid given by χ = tin/Vin
tout/Vout

= ρin
ρout

, where ρin
and ρout are the number densities of GEMs inside and outside the nucleoid given ergodicity of the system. Here, a value of
χ > 1 indicates preferential localization inside the nucleoid and less than indicates outside. If χ = 0, all GEMs are excluded
from the nucleoid, and infinitely large values of χ indicates confinement within the nucleoid region. Further, we define the ratio
of diffusion coefficients inside and outside the nucleoid as δ = Din/Dout. Using these parameters, we employ the following
random-walk algorithm that represents heteregeneous dynamics and nucleoid localization times:

1. Initialize Ni GEMs to be inside or outside the nucleoid, with the volume normalized bias toward the nucleoid given by χ.

2. For each GEM i, generate a displacement in each of the cartesian coordinate directions from a Gaussian distribution of
zero mean and variance 2 Di ∆t, where Di is the diffusion coefficient given by its current location inside or outside the
nucleoid and ∆t is the time step of the simulation.

3. If the move causes the GEM to go outside of the cell, reject the move and keep the GEM in its original position.

4. If the move would cause the GEM to go from inside the nucleoid to outside, accept the move with a probability given by
pout, which indicates the probability of the GEM escaping the nucleoid region. Similarly, if a GEM goes from outside to
inside the nucleoid, accept the probability with pin. While pin and pout are parameters that can be varied to represent
different physical scenarios, in order to ensure that migration into and out of the nucleoid happen at the same rate
(to preserve the initial relative number of GEMs inside and outside the nucleoid), the following relation must hold:
pin
Din

= χ pout
Dout

.

5. Accept all other moves.

6. Repeat for the desired number of time steps.
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The values of pin and pout determine the degree of confinement within the nucleoid or exclusion from the nucleoid. For
each GEM, we ran simulations different scenarios to see if experimental MSDs were recovered, as shown in Fig. S16. Free
diffusion between regions, with pin = 1 if χ > 1 and pout = 1 if χ < 1 alongside the relation pin

Din
= χ pout

Dout
is labeled in Fig. S16

as "porous sphero-cylindrical shell". Another mode of diffusion that was simulated was two-region confinement, where each
GEM is confined to inside or outside the nucleoid depending on its initial location (pin = pout = 0). Finally, we also simulated
the scenarios where all GEMs were initially located and confined to the space inside or outside the nucleoid.

We rigorously tested the above algorithm to ensure that it reproduces the desired relative time spent inside the nucleoid.
Furthermore, we benchmarked the algorithm for time step sensitivity, beginning with a time step much smaller than a GEMs
Brownian time a2

GEM/D and found that time steps up to 10 Brownian times produce the same MSDs. Such large timesteps are
feasible since we are only coarse-graining the motion of GEMs over very long lag times and GEMs have no interactions beyond
confinement. All macromolecular interactions that influence dynamics are coarse grained to be represented by the diffusion
coefficients.

The size of the nucleoid and cell were first determined by experimental images and then adjusted slightly in order to match
the plateaus in MSD observed in experiments. Discrepancies between nucleoid and cell sizes determined from experimental
images and the random-walk simulations were less than 10%. Diffusion coefficients were varied in order to match experimental
MSD data. The ratio of diffusion coefficients inside (Din) to outside (Dout) the nucleoid were estimated from the colloidal
whole-cell simulations by the ratio of MSDs inside and outside the nucleoid at a lag time where particles diffuse an equivalent
to one timestep in the probabilitic long-time simulations. For all of these simulations, a bulk diffusion coefficient (Dbulk) was
determined from the MSD of all trajectories inside and outside. We also ran simulations with the bulk diffusion coefficient,
and found that two-mode heterogeneous diffusion did not produce any discernible characteristics in MSD at this level of
coarse-graining, meaning a random walk throughout the cell with Dbulk produced equivalent MSDs to having separate Din and
Dout. However, localization statistics that arise from the base penetrability ( pin and pout ) and ratio of penetration into and
out of the nucleoid ( χ ) do impact both the times at which anomolous diffusion emerges as well as the confinement plateaus in
MSD.
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Fig. S1. Mean square displacements for 50 nm bGEMs diffusing in exponential and stationary phase cells
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Fig. S2. Histograms of particle localization for all bGEMs sizes and charges. Data is shown for all three projection planes xy,yz,xz. The total number of data points for each
figure is shown in the text on the left. The data was binned such that each pixel in the images is close to 30nm.
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Fig. S3. Pole occupation for bGEMs. (A) Percentage of localizations found at the cellular poles for the different size variants. (B) Percentage of localizations found at the
cellular poles for the different charge variants.
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Fig. S4. Bacterial Genetically Encoded Multimeric Nanoparticles. (A) bGEMs self-assemble into icosahedral particles from sub-units expressed by a plasmid in the bacterial
cell. Each sub-unit consists of a scaffold protein linked to a fluorescent protein (FP). Protein visualizations from[36]. (B) Negative stain transmission Electron microscopy results
for new 50 nm GEMs. Inset: TEM image showing 2 50 nm GEMs (red arrows), scale bar: 50 nm. (C) Amino acid sequence for new -18 GFP charge variant.

Valverde-Mendez, Sunol et al. | 13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.587083doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587083
http://creativecommons.org/licenses/by-nc/4.0/


488nm

561nm

405nm

EM
-CC

D

D1

D2

D3

Filter
Wheel

100X / 1.49 Oil

BS

Biplane
Module

Rectangular
mask

Microscope body

FP

FP’

2x Telescope

FP

Fig. S5. Simplified diagram of the optical setup for the biplane microscope. The biplane module consists of a beam splitter and mirror. This simple addition enables the user to
image two separate focal planes simultaneously. On the illumination path, a rectangular mask is used to block part of the beam to create the right shape for illumination in the
biplane setup.
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Fig. S6. Image analysis pipeline. (A) To create a composite image for tracking the two focal planes are added together. (B)Segmented cell with background subtraction (C)Cell
outline overlaid over nucleoid image and GEM channel.
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Fig. S7. Fitting pipeline exemplified on simulated data and experimental data. Noisy images (A) are first fitted with a rectangular mask (B), then an empirical spherocylindrical
mask (C) is fitted to the noisy image. Spot finding is done in the residuals image (D).
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Fig. S8. Localization error and background subtraction. (a) Simulated image used for testing the xy peak finding algorithm and background subtraction. The background
subtracted peak finding (salmon) is closer to the true particle position (green) than the peak finding result without background subtraction (gray). (b) The localization error
histograms for the x and y axis peak finding show a marked improvement when background subtraction is implemented before peak detection.
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Fig. S9. Graphical representation of the convolution tracking algorithm (A) z-positions are determined for each plane, a weighted sum of these positions based on the relative
focus of the particle is used to determine the true location. (B) Gaussian fit of the intensity profile for a z-sliver (10x1) of data surrounding the intensity peak (sliver is taken at
the xy location of the candidate particle).
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Fig. S10. Artifacts in the MSD from static and dynamic localization errors. (A) Shows the uncorrected MSDs, the trajectories appear sub-diffusive at short time lags, this is a
result of the static localization error. It appears as though there are multiple diffusion regimes, specially for the 40nm +1800e GEMs. (B) When the static localization error is
subtracted from the trajectories, these spurious diffusion regimes disappear. For the first few time lags, the particle’s dynamics appear to be diffusive, this is an artifact of the
dynamic localization error.
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Fig. S11. Nucleoid segmentation and trajectory points in nucleoid classification (A) Nucleoid image with a single nucleoid highlighted in black (B) Only trajectory points located
inside both nucleoid cross-sections (xy and xz) are classified as inside the nucleoid region. Cross-sections are found from the segmentation shown in A.
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Fig. S12. Self-assembled network of colloidal particles represent the E. coli nucleoid under different solvent conditions. (A) (left) Visualization of E. coli nucleoid morphologies
under two different solvent conditions [18]. (right) We construct model nucleoids in simulation that recapitulate both the density of DNA and the nucleoid porosity reported in
experiments. (B) Probability distribution function of void radii ri [33] for the two model nucleoids reveals that both structures have a heterogeneous distribution of pore sizes, but
the bottom (outlined in red) structure is relatively more homogenized. The x-axis is normalized by the characteristic size of a DNA bead, which in this case is ai = 7 nm. The
red curve represents the pore-size distribution of the nucleoid used throughout the simulations in this work.
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Fig. S13. Macromolecules experience electrostatic attractions or repulsions depending on their relative charges. Interaction potentials Vij/kBT between all unique types of
macromolecule pairs, i,j (labels above, and representations to right). Particle pairs that are both negative or both positive (e.g., pairs of the same type, along the diagonal)
experience repulsions, where Vij/kBT > 0. The charge of GEMs (40 nm, shown here) can be tuned by changing the charge of individual GFP monomers (legend to left;
colors), which can induce moderately strong attractions between positively charged GEMs and ribosomes, DNA, and negative crowders (Vij/kBT < 0). When pairs reach
their defined contact distance (vertical dashed lines), they experience a steeply repulsive Morse potential that enforces entropic exclusion.
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Fig. S14. Simulations reveal varying local macromolecular environment as a function of surface charge. Snapshots are from simulations of (A) 40 nm, -2160e, (B) 40 nm,
-840e, and (C) 40 nm +1800e GEMs. (D) Probability distribution function of coordination numbers between GEMs of different charges and ribosomes, DNA, and positive and
negatively charged crowders quantifies changes in local interactions induced by GEM charge.
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Fig. S15. MSD of GEMs inside versus outside the nucleoid obtained from colloidal whole-cell simulations. Data are from simulations of (A) 20 nm, -420e, (B) 40 nm, -840e, (C)
50 nm, -1050e, (D) 40 nm, -2160e, and (E) 40 nm +1800e GEMs.
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Fig. S16. Probabilistic simulation of excluded volume nucleoid reveal the role of geomoetry and confinement on anomolous diffusion in E. coli. (A-E) MSD over time for (A) 20
nm, -420e, (B) 40 nm, -840e, (C) 50 nm, -1050e, (D) 40 nm, -2160e, and (E) 40 nm +1800e GEMs. Colored symbols are experimental data. Black lines represent diffusion
through a porous sphero-cylindrical shell (solid lines), two-region confinement (dashed lines), or complete localization and confinement within one region of the cell (dotted
dashed lines), as described in Sec. . Diffusion coefficients and nucleoid occupation times for each simulation are in Table S7. (F) MSD versus normalized lag time for all
experiments shows that all trajectories display similar dynamic behaviors, with differences in the timescales of confinement plateaus. Solid black line is from simulation in (B)
and dotted line is free, unconfined diffusion.
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Table S1. Localization error for each particle size and charge. The errors are obtained from fitting the MSD curves with equation 15. The 1D
localization uncertainity is ≈ 50nm for all particles.

20nm 40nm (-2160e) 40nm (-840e) 40m (+1800) 50 nm
σx 64.21 51.31 47.42 42.64 39.84
σy 53.39 44.53 43.91 41.70 44.79
σz 54.94 50.79 55.79 77.17 59.39
σ3D 99.96 84.82 85.38 97.53 84.38
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Table S2. Diffusion coefficients and exponents from experiments and simulations. Experimental values are obtained as described in S2. To
enable comparison between effective diffusion coefficients a fixed α =0.75 was fitted to obtain the diffusion coefficients of particles of diameter
40 nm and 50 nm.

bGEM αexp (best fit) Deffsim αsim Deffsim

20 nm 0.43 0.040 µm2/s0.43 0.91 0.94 µm2/s0.86

40 nm (-2160) 0 .68 0.015 µm2/s0.75 0.84 0.25 µm2/s0.86

40 nm (-840) 0.74 0.036 µm2/s0.75 0.88 0.29 µm2/s0.86

40 nm (+1800) 0.74 0.007 µm2/s0.75 0.86 0.024 µm2/s0.86

50 nm 0.78 0.024 µm2/s0.75 0.84 0.18 µm2/s0.86
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Table S3. Primers used in this study.

Name Sequence Used for amplifying
DVMO2 TTTAGCTTCCTTAGCTCCTG pEVS143 backbone
DVMO3 gagctaaggaagctaaaaATGCTCTCAATAAATCCAACC PFV from pLHC611-pcDNA3.1-Pfv-Saphire
DVMO19 TGATTGAGCAAGCTTTATGC pEVS143 backbone
DVMO20 ataaagcttgctcaatcaTTTGTAGAGTTCATCCATGC msfGFP from NMP158
DVMO21 gttaattaagAGTAAAGGTGAAGAACTGTTCAC msfGFP from NMP158
DVMO22 acctttactCTTAATTAACCCGGGGATC PFV from pLHC611-pcDNA3.1-Pfv-Saphire
DVMO37 TCTGGCAGCGGTAGTGGG pDVM1 backbone no scaffold
DVMO38 TTTTAGCTTCCTTAGCTCCTG pDVM1 backbone no scaffold
DVMO39 aggagctaaggaagctaaaaATGCAAATATACGAAGGCAAG AqLS from pLH1426-pRS305-PIN04-AqLS
DVMO40 gacccactaccgctgccagaTCTCAAGCTCTTAAACAAATTTG AqLS from pLH1426-pRS305-PIN04-AqLS
DVMO41 aggagctaaggaagctaaaaATGATGTTTTCCAAAAACCC Vuldi from pLH1426-pRS305-PIN04-Vuldi
DVMO42 gacccactaccgctgccagaACCTTGCCTCAGAATAATCAC Vuldi from pLH1426-pRS305-PIN04-Vuldi
DVMO43 TTGAGCAAGCTTTATGCTTG pDVM1 backbone no fluorophore
DVMO44 CTTAATTAACCCGGGGATC pDVM1 backbone no fluorophore
DVMO45 ggatccccgggttaattaagATGGGTCATCACCACCAC GFPNEG30 from pET-GFP-NEG30 and GFPPOS 15 from pET-GFP-POS15
DVMO46 caagcataaagcttgctcaaTTACTTGTACAGCTCGTCCATTC GFPNEG30 from pET-GFP-NEG30 and GFPPOS 15 from pET-GFP-POS15
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Table S4. Strains used in this study.

Strain Description Source
ZG1352 WT E.coli MG1655 [37]
S17 Ec used for cloning and plasmid conjugal transfer [38]
DVM085 MG1655+pEVS143::Ptet-AqLS-msfGFP+pSACT101; Kanr , Ampr This study
DVM076 MG1655+pEVS143::Ptet-PFV -msfGFP+pSACT101; Kanr , Ampr This study
DVM079 MG1655+pEVS143::Ptet-PFV -GFPPOS15+pSACT101; Kanr , Ampr This study
DVM083 MG1655+pEVS143::Ptet-PFV -GFPNEG18+pSACT101; Kanr , Ampr This study
DVM090 MG1655+pEVS143::Ptet-Vuldi-msfGFP+pSACT101; Kanr , Ampr This study
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Table S5. Simulation parameters for construction of a whole-cell E. coli colloidal model

Radius of nucleoid region Rn 280 nm

Radius of cell Rcell 383 nm

Volume fraction of DNA within nucleoid ϕn 0.1

Total volume fraction of nucleoid + cytoplasm ϕtot 0.31

Radius of DNA ⟨aDNA⟩ 7 nm, σ2 = 0.5

Charge of DNA qDNA −616e

Number of DNA beads NDNA 6310

Radius of ribosomes arib 13 nm

Charge of ribosomes qrib −3966e

Number of ribosomes Nrib 2931

Radius of GEMs aGEM 10, 20, 25 nm

Charge of GEMs (for 40 nm size) qGEM −2160e, −840e, +1800e

Number of GEMs NGEM 50

Radius of positive and negative crowders acrowd 7 nm

Charge of positive crowders qcrowd,pos +34e

Number of positive crowders Ncrowd,pos 19160

Charge of negative crowders qcrowd,neg −70e

Number of negative crowders Ncrowd,neg 5227
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Table S6. Simulation parameters for probabilistic simulations of excluded volume nucleoid

Cylindrical diameter of cell (not including caps) lcell 1400 nm

Cylindrical radius of cell rcell 400 nm

Radius of spherical caps rcap 400 nm

Cylindrical diameter of nucleoid ln 1200 nm

Cylindrical radius of nucleoid rn 300 nm

Radius of GEMs aGEM 10, 20, 25 nm
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Table S7. Parameter and outputs of long-time probabilistic simulations of an excluded volume nucleoid. The ratio tin/tout was obtained from
nucleoid occupation times in Figs. 2c and 3c. Diffusion coefficients were tuned to match experimental MSDs (Fig. 4a). Effective viscosity was
calculated from the Stokes-Einstein equation with Dbulk as the diffusion coefficient. For reference, ηeff,GFP ≈ 9.7 cP in the E. coli cytoplasm
[39] and ηwater @ 23 °C ≈ 0.93 cP.

bGEM Type tin/tout Dbulk (µm2/s) Din (µm2/s) Dout (µm2/s) ηeff (cP)

20 nm 1.0 0.0791 0.0791 NA 137

40 nm, -840e 0.39 0.0674 0.0586 0.0733 80.5

50 nm 0.32 0.0397 0.0324 0.0432 109

40 nm, -2160e 0.41 0.0259 0.0208 0.0296 209

40 nm, 1800e 0.25 0.0122 0.00446 0.0149 445
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