

1

2

3 **The tumor suppressor p53 mutational status controls**

4 **epithelial 3D cell growth under mechanical compression**

5

6 **Short Title:**

7

8 **Genetics favoring epithelial 3D cell growth under confinement**

9

10 **Authors:**

11

12 **Mickael Di-Luoffo<sup>1,2,\*</sup>, Silvia Arcucci<sup>1</sup>, Nicole Therville<sup>1</sup>, Tristan Marty<sup>3</sup>, Romina D'Angelo<sup>1</sup>,**  
13 **Maria Chaouki<sup>1</sup>, Benoît Thibault<sup>1</sup>, Pascal Swider<sup>3</sup>, Pauline Assemat<sup>3</sup>, Morgan Delarue<sup>1,2,†</sup>,**  
14 **Julie Guillermet-Guibert<sup>1,2,†,\*</sup>**

15

16 **Affiliations:**

17

18 <sup>1</sup>Affiliation 1: Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de  
19 Toulouse, CRCT, Toulouse, France, Labex Toucan, Toulouse.

20 <sup>2</sup>Affiliation 2: LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.

21 <sup>3</sup>Affiliation 3: Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse,  
22 CNRS, Toulouse 31400, France.

23 <sup>†</sup>Co-last authors

24 \*Authors to whom correspondence should be addressed: [mickael.di-luoffo@inserm.fr](mailto:mickael.di-luoffo@inserm.fr),  
25 [julie.guillermet@inserm.fr](mailto:julie.guillermet@inserm.fr); Tel.: +33 5 82 74 16 52

27 **Abstract:**

28 **Context:** Solid tumors are subjected to mechanical stimuli arising from their growth in confined  
29 environments. Growth-induced pressure builds up in tumors such as pancreatic cancer and rises  
30 alongside the occurrence of genetic alterations during tumorigenesis. This study aims to understand  
31 the so far unknown relationship between genetic alterations and cancer cell behavior under  
32 compressive stress.

33 **Results:** Using isogenic cell lines with engineered p53 mutations, we showed that the p53  
34 background influences cell response to compression. Tumor growth under compression increased  
35 in cells harboring a mutated-truncated p53 form. This mutation blocked caspase 3 cleavage and  
36 promoted survival and growth through PI3K-AKT activation and dysregulation of c-FOS and FOSB  
37 transcription factors network. Mutated-truncated p53 cells displayed a unique behavior and  
38 heightened an activation state under compression.

39 **Conclusion:** Mechanical compression and p53 mutations together drive tumor growth. p53 status  
40 could be a biomarker for predicting tumor adaptation to mechanical stress and efficiency of therapies  
41 targeting mechanosensitive pathways.

42 **Teaser:**

43 Mechanical compression and p53 mutations together enhance cancer cell survival and growth,  
44 driving solid tumor progression.

45 **Introduction:**

46 Mechanical stresses and strains are inherent to physiological tissues and largely associated to solid  
47 cancers. At a cellular scale, all cells are continuously exposed to mechanical stimuli. Mechanical  
48 stresses can be transmitted to internal structures, including the nucleus (1). There are three types of  
49 mechanical stresses: shear, tensile and compressive stresses (2). These stresses originate from cell-  
50 cell interactions, from cell-extracellular matrix (ECM) interactions and eventually from interstitial  
51 flows (3). During solid cancer development, the rapid growth and proliferation of tumor cells  
52 associated with accumulation of ECM in a tissue (4) increases cell confinement leading to a growth-  
53 induced pressure, which in turn increases the compressive stress applied to tumor and stromal cells  
54 (5). When mechanical stress is applied to a cell, it triggers a mechanotransduction response that  
55 leads to alterations in gene expression, mutations and/or pathways dysregulation. Under  
56 physiological conditions, epithelial cells respond to compressive strains and stresses by limiting  
57 their proliferation, nevertheless such stimuli are relatively low in homeostasis conditions (6). In  
58 tumors such as pancreatic cancer (PDAC), the cells grow despite the build-up of compressive stress  
59 (4). Confinement-induced compression also increases resistance to chemotherapy, partly because it  
60 sustains cell survival and reduces proliferation, thus decreasing the effectiveness of cytotoxic and  
61 cytostatic drugs (7, 8).

62 Increase of mechanical stimuli and occurrence of genetic alterations are concomitant in solid cancers  
63 development (9, 10). One of the mutations associated with solid cancers is the mutation of the small  
64 GTPase KRAS associated to MAP Kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathway.  
65 PI3K pathway is altered in more than 50% of all cancers (11). In physiological conditions, KRAS  
66 switches between inactivated GDP-bound form and an active form bound to GTP (12). The KRAS-  
67 GTP active form directly interacts with downstream effectors in MAPK pathway and different PI3K  
68 isoforms (13-15). In most cancers, oncogenic KRAS genetic alterations are generally occurring in  
69 the initial step of solid cancer progression (16, 17). Solid cancers harboring the highest mutation  
70 rates on KRAS are pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC), found in about 90-  
71 95% of cases (12), colorectal cancer (CRC) in 35-45% of tumors (13) and lung adenocarcinoma in  
72 20-30% of cases (18).

73 Associated with KRAS mutations, mutations in the TP53 gene occur in more than 50% in head and  
74 neck, lung, colorectal, ovarian, esophageal and pancreatic cancers (19-23). In the case of PDAC,

80 mutations in the *TP53* gene are found in more than 60% of patients (24). One of the most common  
81 mutations found in humans is p53<sup>R175H</sup> mutation (25), along with its mouse homologue p53<sup>R172H</sup> (24,  
82 25). This alteration leads to a loss of function of p53 as a genome guardian associated with a gain  
83 of function of the protein, conferring proliferative, invasive, and migratory capabilities to cancer  
84 cells, as well as resistance to chemotherapeutic agents (26). PDAC is one of the cancers with the  
85 most frequent genetic alterations of p53, and some of these mutations or insertions/deletions lead to  
86 a translational frameshift inducing insertion of a STOP codon in its sequence and the translation of  
87 a truncated p53 protein (27, 28).

88 Over the last decades, researchers have been interested in the effect of mechanical stresses and  
89 strains during in both physiological and pathological conditions (29-31). In particular, deciphering  
90 the effect of mechanical stresses that emerge during solid cancer development has become  
91 increasingly timely (32, 33). However, the causal association between the combined genetic and  
92 mechanical context and solid cancer progression is poorly studied. Here, we aim at understanding  
93 the importance of various genetic context (such as *KRAS* and *TP53* mutations) on tumor behavior  
94 under compressive stimuli, using PDAC as a paradigmatic model of heightened confinement.

95 The genetic context is well established in the diagnosis and care of most patients with solid cancers:  
96 using Next Generation Sequencing or DNA Methylation Analysis, some cancer treatments are based  
97 on identified genetic alterations (34, 35). Our work identified selective mutants of p53 that sustain  
98 growth under compression and favors oncogenic PI3K activation. This knowledge will help to move  
99 towards a personalized patient care, taking into account both genetics and mechanics for patient-  
100 personalized cancer therapy.

## 101 Results:

### 103 1. *p53* mutation prevents the 3D growth reduction normally induced by confinement in PDAC 104 spheroids.

105 To answer our question, we positioned our experimental setup to mimic solid cancer development  
106 (Figure 1A). While the genetic alterations and genome instability prompt the evolution of lesions,  
107 the induced mechanical context leads to the confinement of growing cancer cells. A paradigmatic  
108 model to study this stage transition is pancreatic cancer (PDAC) (25, 26). To model this, we  
109 developed isogenic cell lines from parental *KRAS*<sup>G12D</sup> murine PDAC cells, stably transfected with a  
110 doxycycline-inducible Tet-ON system. We prompted a stable expression of GFP in cells called K<sup>+</sup>  
111 (*KRAS*<sup>G12D</sup>) combined or not with an enhanced expression of a mutated form of p53 (p53<sup>R172H</sup>) in  
112 cells called K<sup>+</sup>p53<sup>M</sup> (Figure 1B; Supp Figure 1A). DNA sequencing blasted to p53<sup>WT</sup> sequence  
113 validated that PDAC cells were transfected with empty plasmid or plasmid containing p53<sup>R172H</sup>  
114 mutation (Supp Figure 1B). Further, p53 level in K<sup>+</sup>p53<sup>M</sup> cells was 3.3-fold increased compared to  
115 isogenic empty vector clones (K<sup>+</sup>) (Supp Figure 1C).

116 Four clones of PDAC murine cells harboring *KRAS*<sup>G12D</sup> single mutation (K<sup>+</sup>) or harboring *KRAS*<sup>G12D</sup>;  
117 p53<sup>R172H</sup> mutations (K<sup>+</sup>p53<sup>M</sup>) were used to test the effect of 3D confinement (Figure 1C). After 2  
118 days, K<sup>+</sup> or K<sup>+</sup>p53<sup>M</sup> spheroids made with the pending droplet method were deposited onto a 1% low  
119 gelling temperature agarose cushion to allow their free growth; others were embedded into a 1%  
120 low gelling temperature agarose (Figure 1C). Both media were supplemented with doxycycline for  
121 2 days. Confined growth in agarose induced a growth-induced pressure as estimated in Supp Figure  
122 1D (detailed in M&M §Spheroids generation and agarose confinement (8)), generating mechanical  
123 compressive stress on cells. By following the evolution of spheroids over 6 days, we first identified  
124 the effect of such stress on long-term 3D growth. GFP expression was stable in all spheroids (Figure  
125 1D, see inset pictures). Free-growing K<sup>+</sup>p53<sup>M</sup> spheroids grew slower over time than K<sup>+</sup> spheroids  
126 (No Comp vs No comp in Figure 1D left and center panel, graphs and pictures). However, the 3D  
127 confinement significantly reduced the 6 day-spheroid radial growth by 16% in K<sup>+</sup> genotype (Comp  
128 vs No comp in Figure 1D left panel, graphs and pictures) and did not affect spheroid growth in 3 out  
129 of 4 clones of K<sup>+</sup>p53<sup>M</sup> genotype (Figure 1D center panel, graphs and pictures). The confined K<sup>+</sup>p53<sup>M</sup>  
130 spheroids showed a consistent 3D growth advantage at long term compared to their free growing  
131 counterparts (calculated growth rates are shown in Supp Figure 1E). In all genotypes, the early  
132 growth-induced pressure can be estimated in the early time points after careful rheological  
133 measurement of agarose properties and finite-element simulations of a spheroid growth in such

134 material (8). Mechanical compressive stress was in the order of kPa, 1.6kPa in K<sup>+</sup> genotype and 0.6  
135 kPa in K<sup>+</sup>p53<sup>M</sup> genotype (Supp Figure 1D). Surprisingly, 1 clone (K<sup>+</sup>p53<sup>M;clone 4</sup>) saw its long-term  
136 radial growth significantly increased under confinement (+60% in K<sup>+</sup>p53<sup>M;clone 4</sup> compressed  
137 spheroids compared to uncompressed) (Figure 1D right panel, graphs and pictures).

138 The K<sup>+</sup> clones are sensitive to confinement, and their long-term confined 3D growth is reduced,  
139 while three K<sup>+</sup>p53<sup>M</sup> clones are insensitive to confinement and one K<sup>+</sup>p53<sup>M</sup> clone increased its 3D  
140 growth under confinement. The embedding in the rigid and inert matrix is providing a proliferative  
141 advantage to these spheroids.

142 *2. The heightened growth under confinement is explained by a truncation of p53 protein*

143 We observed that K<sup>+</sup>p53<sup>M;clone 4</sup> grew faster in agarose (Figure 1D). The western blot analysis of p53  
144 protein revealed that the protein level of the full-length form of p53 was equally increased in the  
145 four clones (K<sup>+</sup>p53<sup>M</sup>) compared to the K<sup>+</sup> clone (Figure 2A upper bands). A lower band was present  
146 at approximately 28 kDa size, which could correspond to a truncated form of p53. This truncation  
147 of p53 is found endogenously in humans and named p53<sup>psi</sup> form (27). This band was barely present  
148 in the K<sup>+</sup> clone and in the first three K<sup>+</sup>p53<sup>M</sup> clones. However, its level was increased in the fourth  
149 clone (K<sup>+</sup>p53<sup>M;clone 4</sup>) (Figure 2A lower bands). In the genomics data of 20 cancer types from TCGA  
150 cohorts (between 185 and 1098 cases per cancer), genetic alterations encoding for truncated forms  
151 of p53 were present in 16.5% to 2% of cases depending on the cancer observed (from esophageal  
152 squamous cell cancer to myeloma) (Figure 2B). In TCGA-PDAC cohort (PAAD-TCGA), a genetic  
153 alteration encoding for p53 truncation was found in 11.2% of cases, which places PDAC at the 6<sup>th</sup>  
154 rank of the most truncated cancers for p53 (Figure 2B). Among the 145 PDAC patients from the  
155 TCGA, 70% harbored a p53 mutation. Among the 70% of mutated p53 in PDAC cohort, 50% were  
156 missenses mutations, 12% truncations in other exons and 8% truncations in exon 6 of p53 (Figure  
157 2C).

158 We hypothesized that the increased level of truncated form of p53 found in the (K<sup>+</sup>p53<sup>M;clone 4</sup>) could  
159 be responsible for the increased 3D growth under confinement. We next developed another isogenic  
160 cell line from the parental PDAC murine cells harboring KRAS<sup>G12D</sup> single mutation with a stable  
161 expression of a mutated-truncated form of p53 in exon 6 (p53<sup>R172H;R210\*</sup>, called K<sup>+</sup>p53<sup>M;T</sup>) using the  
162 doxycycline-inducible Tet-ON system (Figure 2D). Western blot analysis showed that the truncated  
163 form of p53 was significantly and 4.6-fold higher in the mutated/truncated p53 cells (K<sup>+</sup>p53<sup>M;T</sup>)  
164 compared to the KRAS<sup>G12D</sup> (K<sup>+</sup>) mutated cells (Figure 2E). A truncation by insertion of STOP codon  
165 in exon 6, invalidates the DNA binding domain and removes the nuclear localization domains  
166 (Figure 2F), which could amplify the gain-of-function of missense mutants (27, 28). In accordance,  
167 we demonstrated that p53 truncated in exon 6 (K<sup>+</sup>p53<sup>M;T</sup>) presented a localization restricted to  
168 cytosol, while wild-type p53 was mainly found in the nucleus (27) (Figure 2F).

169 In addition, confined K<sup>+</sup>p53<sup>M;T</sup> spheroid radial growth was significantly increased by 28% (Comp)  
170 compared to free-growing K<sup>+</sup>p53<sup>M;T</sup> spheroids (Figure 2G); in this context, confined 3D growth  
171 allowed the accumulation of a growth-induced pressure of 3.9 kPa (Supp Figure 1D). We tested  
172 whether the 3D growth advantage provided by confinement in p53 mutant cells was due to an  
173 intrinsic bias caused by genotype. In 2D, K<sup>+</sup>p53<sup>M</sup> cell numbers increased significantly and more  
174 rapidly than the K<sup>+</sup> cells (Supp Figure 1F). The K<sup>+</sup>p53<sup>M;T</sup> and K<sup>+</sup>p53<sup>M;clone 4</sup> cells, however, had a  
175 slightly reduced curve compared to the control K<sup>+</sup> cells, this delay was also observed in free spheroid  
176 growth (Supp Figure 1F, Figure 1D, Figure 2G).

177 The increased 3D growth under confinement in a rigid matrix of clone 4 is phenocopied by a  
178 truncation of p53 associated with a p53 mutation. Intrinsic 2D growth rate of K<sup>+</sup>p53<sup>M;T</sup> and K<sup>+</sup>p53<sup>M;clone 4</sup>  
179 cells did not explain the observed increased 3D growth rate under confinement. We next aimed  
180 to understand more precisely the mechanisms associated with 3D growth increase under  
181 confinement by mutated-truncated p53.

182 *3. Mutated-truncated p53 cells lose the growth-inhibitory early AP-1 pathway gene response under  
183 confinement*

184 In order to better understand the intracellular mechanisms associated with the 3D growth advantage  
185 under confinement, we investigated the early gene response. Spheroids of either K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup> or  
186 K<sup>+</sup>p53<sup>M;T</sup> cells were confined and analyzed by RNA sequencing at an early time point (D2), prior to

187 observed differences in long-term 3D growth (Figure 3A). The principal component analysis (PCA)  
188 mapping allowed to identify two groups of samples: the group containing  $K^+$  and  $K^+p53^M$  spheroids  
189 and another group including  $K^+p53^{M:T}$  spheroids (Figure 3A, Supp Figure 2A). A difference between  
190 confined and unconfined conditions was also clearly identified in  $K^+p53^{M:T}$  spheroids (Figure 3A).  
191 We focused our analysis on the significantly upregulated genes that were less prone to bias in sample  
192 preparation. The expression of the top 15 genes upregulated by compressive stress in  $K^+$ ,  $K^+p53^M$   
193 spheroids differed largely between each genotypes (Figure 3B, Supporting Table 1). In  $K^+p53^{M:T}$   
194 genotype, we identified, amongst the top 15 genes, two genes of AP-1 family (Activator Protein 1),  
195 *c-Fos* and *FosB* (FBJ Murine Osteosarcoma Viral Oncogene Homolog), which exhibited higher  
196 expression under confinement compared to  $K^+$  and  $K^+p53^M$  genotypes (Figure 3B, 3C). We next  
197 analyzed relative mRNA levels by RT-qPCR. *c-Fos* and *FosB* mRNA expressions were significantly  
198 increased by 5.4 and 2.2-fold in  $K^+p53^{M:T}$  spheroids under confinement (Figure 3D); however, *c-*  
199 *Fos* was also found increased by 3.7 and 3.4 in  $K^+$  and  $K^+p53^M$  cells, respectively (Figure 3D).  
200 Those RT-qPCR results are in line with the global RNAseq analysis, in which we observed that the  
201 top regulated genes in  $K^+p53^{M:T}$  spheroids were also globally upregulated to the same scale in  $K^+$   
202 and  $K^+p53^M$  (Figure 3B,C).

203 To demonstrate the role of these two transcription factors in 3D growth under confinement, we  
204 developed a c-FOS and FOSB knock down strategy (alone or in combination), using siRNAs  
205 directed against each of them (Figure 3E). To validate the knock down strategy, we performed a  
206 western blot against c-FOS and FOSB from transfected cells with scramble siRNA or siRNA against  
207 c-FOS, FOSB and combination of both. SiRNA against c-FOS and combination of siRNA against  
208 c-FOS and FOSB significantly decreased c-FOS protein expression (Figure 3E). Moreover, siRNA  
209 against FOSB and combination of siRNA against FOSB and c-FOS significantly decreased FOSB  
210 protein level compared to scramble siRNA (siCTL) (Figure 3E).

211 In  $K^+$  and  $K^+p53^{M:T}$  spheroids, siRNA against c-FOS and FOSB or combination of both did not  
212 affect spheroids growth in free growth condition (Figure 3F left panels). However, FOS factors  
213 silencing (c-FOS, FOSB alone and both) significantly increased spheroid growth by 1.3 fold in  
214 confined  $K^+$  spheroids but not in confined  $K^+p53^{M:T}$  spheroids (Figure 3F right panels). The  
215 compressed FOS-silenced  $K^+$  spheroid growth behaved as compressed  $K^+p53^{M:T}$  spheroids and free-  
216 growing  $K^+$  spheroids (Figure 3F).

217 We here identified a mechanism responsible for reduced 3D growth in confined  $K^+$  spheroids which  
218 is abrogated by expression of  $p53^{M:T}$ , while the additional overexpression of both c-FOS, FOSB in  
219 confined  $K^+p53^{M:T}$  spheroids could be a compensatory response to the absence of FOS factor cellular  
220 effects.

#### 222 4. Confinement activates differently PI3K-AKT pathway in mutated-truncated p53 cells

223 We next hypothesized that, in  $K^+p53^{M:T}$  genotype, a signaling adaptive response could be  
224 responsible for the increased growth fitness in response to confinement. We thus analyzed in an  
225 unbiased manner the gene signatures enriched in compressed condition. While all genotype harbored  
226 enrichment in signatures associated to DNA regulation (GO terms, Supp Figure 2B) further  
227 validating our findings in Figure 3, we also observed a strong enrichment of signatures linked to  
228 signalling in  $K^+p53^{M:T}$  spheroids under confinement vs free-growth (Figure 4B). We identified an  
229 enrichment in genes controlling cell adhesion *via* the plasma membrane and pathways associated  
230 with tyrosine kinase receptors (TKR) that are partly regulated or translated into biochemical signals  
231 by PI3K pathway and MAPK (KRAS) pathway, while genes controlling angiogenesis and cell  
232 migration pathways were enriched in a lower level (Figure 4B). As a major pathway downstream  
233 TKR and cell adhesion molecules (36), the expression of genes in the REACTOME\_PI3K-AKT  
234 signature in cancer was analyzed. Under confinement, the genetic background of spheroids ( $K^+$ ,  
235  $K^+p53^M$  or  $K^+p53^{M:T}$ ) modulated the quantitative and qualitative gene expression in the PI3K-AKT  
236 pathway at different levels (Figure 4B). Moreover, among class I of PI3Ks, two out of four members,  
237 *Pik3ca* and *Pik3cd*, saw their mRNA expressions respectively 2.5-fold and 5.3-fold-increased in  
238 confined  $K^+p53^{M:T}$  spheroids compared to free-growing spheroids (Figure 4C). Only  $K^+p53^{M:T}$   
239 spheroids, harbored a significant 2.2-fold increase in AKT phosphorylation, reflecting the  
240 PI3K/AKT pathway activation under confinement (Figure 4D). PI3K/AKT is known to control cell  
241 survival (37, 38). We thus assessed the level of a cell death marker in the spheroids.  $K^+$  spheroids

242 displayed a cleaved caspase-3 (cC3) positive core, while  $K^+p53^{M:T}$  showed a more diffuse CC3  
243 distribution (Figure 4E). Confinement of  $K^+p53^{M:T}$  spheroids leads to an early gene response  
244 characterized by early plasma-membrane signalling associated with functional activation of  
245 PI3K/AKT survival pathway.

246 *5. In vivo tumor growth and tumor mechanics interaction differ between the three tested genotypes*

247 We next aimed to test the physio-pathological relevance of our findings in preclinical models of  
248 PDAC such as subcutaneous allografts (Figure 5A). *In vivo*, the basal growth rate of  $K^+$ ,  $K^+p53^M$ ,  
249  $K^+p53^{M:T}$  tumors was similar (Figure 5B). Fully developed tumors had similar volumes as measured  
250 with B-mode echography (Figure 5C). We observed a tendency to an increase of the shear-wave  
251 elastography (SWE) measure of the  $K^+p53^{M:T}$  tumor (Figure 5D,E) associated with increased  
252 collagen content (Figure 5F, left). The proliferation index as assessed by Ki67 staining and cleaved  
253 caspase-3 apoptosis marker remained similar in all tumor genotypes (Figure 5F, center, right), with  
254 reduced heterogeneity of the values in  $K^+p53^{M:T}$  tumors. To characterize the mechanical stresses  
255 found at tissue level in fully-grown tumors, we adapted a method based on tissue relaxation (Figure  
256 5A) (39). The speed and intensity of tissue relaxation after a 4 mm-punch in the center of the tumor  
257 was measured through the analysis of the pixel displacement fields at the punch border in a 1400  
258 sec time frame in B-mode echography images using Davis© Software and post-processing routines  
259 implemented in python (Figure 5A). We observed that  $K^+$  tumors accumulated mechanical strains  
260 and stresses, as the relative displacement of the punch border was high just after punch compared to  
261  $K^+p53^M$  and  $K^+p53^{M:T}$  tumors. In the latter cases, the punch border remained stable in time, as usually  
262 measured in healthy tissues (Figure 5G). As this absence of mechanical response was associated  
263 with a tendency to an increase of tumor stiffness, as quantified in the pre-punch estimation of an  
264 elastic coefficient using shear wave elastography (SWE) (Figure 5D,E), these data highlight that the  
265 bidirectional interaction between tumor growth and tumor mechanics could differ between the three  
266 tested genotypes.

267 *6. In vivo tumor compression shows the importance of mutated-truncated p53 to promote tumor  
268 growth*

269 To specifically test the sole effect of compression in a controlled manner *in vivo*, we designed a  
270 novel and unique method to compress tumors and mimic a spatial confinement at tissue scale at  
271 tumor initiation to test our model (Figure 1A). We developed a minimally invasive compression  
272 device using 3D printing. The device imposed unidirectional resulting forces *in vivo*, conferring a  
273 localized confinement to the grafted subcutaneous tumor. The location of the subcutaneous injection  
274 in the inter-scapular localization of the mouse allowed support of the growing tumor on the rigid  
275 spine (Figure 6A; Figure 5; for details of this unique method and device, also see M&M §*In vivo*  
276 compression device and associated protocol).

277 The injected isogenic cell lines developed tumors in an interval of 12 to 17 days:  $K^+$  tumors were  
278 detected first (12.7 days  $\pm$  1.3 days), followed by  $K^+p53^M$  (13.1 days  $\pm$  0.8 days) and  $K^+p53^{M:T}$  (17.3  
279 days  $\pm$  1.3 days) (Supp Figure 4). Once the tumor reached around 100 mm<sup>3</sup> diameter, considered as  
280 an early stage in tumor growth, the compression mechanism was placed around the tumor, and the  
281 tumor was compressed for 4 days. The compression mechanism consisted of a 5 mm diameter holder  
282 with a screw entry point on the top and a 10 mm diameter part placed to the skin, surrounding the  
283 tumor allograft (Figure 6A; Supp Figure 3). The initial compressive force applied to the tumors was  
284 low and calibrated to 0.4 N using a force sensor, which corresponds to 5 kPa of compressive stress  
285 (Figure 6A). After 4 days of compression, the growth of KRAS mutated ( $K^+$ ) and KRAS and p53  
286 mutated ( $K^+p53^M$ ) tumors was decreased by 79 and 44% respectively, compared to free-growing  
287 tumors (Figure 6B-C). However, the volume of tumors harboring p53 mutated-truncated form  
288 ( $K^+p53^{M:T}$ ) remained similar with or without compression (Figure 6D).

289 Those data clearly indicate a different behavior of tumors, which depends on the genotype of tumor  
290 cells. Free-growing mutated-truncated p53 tumors are more rigid, while they continue to grow under  
291 confinement.  $K^+p53^{M:T}$  tumors overcome growth inhibition induced by compression, conferring a  
292 growing advantage.

293 *7. Mutated-truncated p53 tumor growth under compressive stress was associated with cell death*

294 Finally, we aimed to test whether the selective adaptive response to mechanical environment  
295 identified in spheroid would be conserved *in vivo* and we used *Fos* gene expression as a proxy of  
296 selective adaptive response in K<sup>+</sup>p53<sup>M:T</sup> tumors. Compressed K<sup>+</sup>p53<sup>M:T</sup> tumors (Comp) harbored a  
297 significant increase in *c-Fos* (3.6-fold) and *FosB* (4.6-fold) mRNA expressions (Supp Figure 5). We  
298 previously showed an increase of proliferative and survival PI3K/AKT signal in K<sup>+</sup>p53<sup>M:T</sup>  
299 background. *In vivo*, no difference was found in Ki67 staining across all conditions, indicative of  
300 unchanged proliferative index (Figure 6E). We next assessed the level of cleaved caspase 3 cell  
301 death marker in the free or compressed tumors. K<sup>+</sup>p53<sup>M:T</sup> tumors harbored a tendency towards a  
302 decrease in cleaved caspase 3 level, indicative of a decreased apoptotic cell death, in uncompressed  
303 (No Comp) tumors compared to the other genotypes. This decrease was found significant in  
304 compressed (Comp) condition, while cleaved caspase 3 expression was not significantly modified  
305 in K<sup>+</sup> and K<sup>+</sup>p53<sup>M</sup> tumors with or without compression (Figure 6E). We observed the same cell  
306 process as measured in confined spheroids (Figure 4E).

307 Finally, we evaluated known molecular actors of mechanical stimuli. It was previously shown that  
308 CAFs could be responsible for tumor cell compression leading to an inhibition of 3D growth; the  
309 inhibition of the transcriptional co-activator YAP was instrumental to this process (40). Indeed,  
310 tumor compression with the unidirectional compression device was associated with significantly  
311 increased the *Yap1* gene expression and of some of its targets (*Ccn1-Cyr61*, *Ap1-c-Jun*), in K<sup>+</sup>p53<sup>M:T</sup>  
312 background only. Other members of YAP pathway (*Ccn2-Ctgf* and *Tead1*) harbored a tendency  
313 towards an increased expression in cells with K<sup>+</sup>p53<sup>M</sup> and K<sup>+</sup>p53<sup>M:T</sup> genotypes compared to K<sup>+</sup> cells  
314 under compression (Supp Figure 6A).

315 All these data point to the fact that FOS factors reduced 3D growth under confinement (Figure 6F).  
316 However, in K<sup>+</sup>p53<sup>M:T</sup> tumors, while the expression of FOS factors was significantly increased by  
317 confinement, the FOS factor-induced inhibition of 3D growth in this mechanical context was  
318 abrogated. Further, PI3K/AKT pathway activation amplified cell survival and growth signaling  
319 pathways. Confined K<sup>+</sup>p53<sup>M:T</sup> tumors are in high oncogenic activation state (high YAP activation)  
320 (Supp Figure 6A) and acquire specificities that overcome the anti-growth effect of confinement.  
321 These data support the idea that truncated p53 mutants, found in a significant proportion of human  
322 tumors, may contribute to cancer progression, particularly in mechanically stressed tumors.

## 323 Discussion:

### 326 1. p53 status and compressive stress in solid tumors

327 Growth-induced pressure is thought to represent an important determinant of solid cancer  
328 progression, particularly in PDAC, a tumor type characterized by an extremely dense stroma  
329 (desmoplasia) and high intratumoral pressure (41-43). In this study, we demonstrated that p53  
330 genetic background significantly modifies the response of PDAC cells and tumors to confinement.  
331 This finding shows that the genetic environment, particularly alterations in *TP53*, is decisive in the  
332 response of cancer cells to mechanical loadings. Whereas wild-type p53 cells display reduced  
333 viability under confinement, cells harboring a mutated-truncated p53 protein exhibit growth  
334 maintenance under confinement, highlighting a critical role of p53 status in mechano-adaptation.  
335 These observations are consistent with earlier reports that compressive stress modifies cell  
336 proliferation and death, collapses blood vessels, and drives necrotic core formation in pancreatic and  
337 breast cancers (44-46). Compressive stress was found to promote mitochondria-dependent cell death  
338 (47). Blood vessel collapse induces hypoxia mechanism and induces HIF1 $\alpha$  expression and  
339 accumulation in tumor cells (48). However, here 3D tumor compression did not significantly affect  
340 *Hif1 $\alpha$*  gene expression in the three different genotypes with or without compression (K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup>,  
341 K<sup>+</sup>p53<sup>M:T</sup>) (Supp Figure 6B). This result could be explained by the fact that pancreatic tumors are  
342 poorly vascularized (49) and hypoxia could not be further modulated by compression.

343 In addition to pancreatic and breast cancers, compressive stress is high in colon cancer and  
344 associated with genetic alterations such as KRAS and p53 mutations (50-54). This solid cancer  
345 develops through a multistep process initiated by specific mutations in proto-oncogenes and tumor  
346 suppressor genes (such as KRAS and TP53) (55). In addition, in this cancer, mechanical stimuli can  
347 initiate tumorigenesis by modulating the WNT pathway and promote metastasis by driving

348 phenotypic shifts and mechanical adaptations that enable tumor cells to survive intravasation,  
349 circulation, and extravasation (52).

350 Moreover, alterations in mitochondrial apoptosis regulation emerge as a key converging point  
351 between AP-1 protein activity and the gain-of-function properties of truncated p53 mutants (56, 57).  
352 c-FOS and FOSB influence mitochondrial apoptotic sensitivity through AP-1-dependent induction  
353 of anti-apoptotic BCL-2, a mechanism shown to preserve outer-membrane integrity and limit  
354 cytochrome-c release (58, 59). In parallel, exon-6 truncating p53 mutants generate a diverse function  
355 isoform of p53 described by Shirole *et al.* (27), which not only lose canonical pro-apoptotic  
356 transcriptional activity but also acquire mitochondrial functions that decrease cell death. Notably,  
357 the exon-6 p53 truncated forms modulate cyclophilin D (CypD), a key regulator of the mitochondrial  
358 permeability transition pore (mPTP), reducing its ability to promote mitochondrial depolarization  
359 and permeability, and thereby further restricting apoptosis (27). These effects are reinforced by the  
360 stabilization of anti-apoptotic BCL-XL and MCL-1 at the outer membrane (60, 61). Altogether, the  
361 anti-apoptotic effect of exon-6 truncated p53 isoforms and AP-1 members associated with pro-  
362 proliferative effect of PI3K-AKT signaling amplifies the cell pro-survival program that consolidate  
363 cell resistance to apoptosis and promote pro-proliferative behavior (27, 62, 63).

364 Our findings extend our knowledge by demonstrating that genetic alterations in *TP53* gene can  
365 fundamentally reshape pathways involved in mechanosensing, change tumor cell fate to adapt and  
366 resist compression stress, thereby influencing solid cancer progression.

## 368 2. *p53* genetic alterations and mechanotransduction

369 Genetic alterations intersect with mechanotransduction pathways to shape tumor progression. In  
370 colorectal and pancreatic cancers, mutations in oncogenes such as *KRAS* and *PIK3CA*, or in tumor  
371 suppressors including *TP53* and *APC*, not only reprogram classical signaling cascades but also  
372 enhance cellular responsiveness to mechanical stress within the tumor microenvironment (55, 64-  
373 66). Mechanical cues such as compressive stress, shear stress and tissue stiffening have been shown  
374 to activate pro-survival pathways like transcriptional regulators such as YAP/TAZ, thereby  
375 promoting proliferation, stemness, and resistance to apoptosis (44, 67). Notably, in colorectal  
376 cancer, the protein VASN amplifies tumor progression by engaging both YAP/TAZ and PI3K/AKT  
377 pathways; VASN interacts with YAP to suppress its inhibitory phosphorylation and concurrently  
378 activates the PI3K/AKT axis, enhancing proliferation, invasion, and EMT (68). In our previous  
379 study, we did not observe any modification of YAP expression in p53 untruncated pancreatic and  
380 breast cancer cells after 24h of 2D compressive stress (10). However, YAP/TAZ Hippo and non-  
381 Hippo pathways are known as key regulators of mechanotransduction under mechanical stress (69).  
382 Here, we found an overexpression of *Yap1* gene and overexpression of downstream targets of YAP  
383 (*Ccn1-Cyr61*, *Ap1-c-Jun*) and this was associated with a strong activation of PI3K/AKT pathway  
384 depending on the p53 mutational background of tumors. This finding is in line with previous studies  
385 involving PI3K/AKT pathway with mechanical compressive stress response in pancreatic and breast  
386 cancer cells (10, 38). Beyond survival under such mechanical stimuli, this study revealed that  
387 mutated-truncated p53 cells exhibited a high activation state and unique phenotypic specificities  
388 under mechanical stress. Notably, it strongly activated the PI3K-AKT pathway in truncated p53  
389 cells, linking stress with intra-tumoral pro-survival signaling. Previous studies have shown that  
390 compressive stimuli could stimulate migration and activate oncogenic cascades such as  
391 AKT/CREB1 in pancreatic cancer (42).

392 Importantly, the mutational background determines how cells integrate these mechanical signals:  
393 for instance, truncated or mutated p53 can impair the effect of the early gene transcriptional  
394 responses by AP1 factors family (c-FOS and FOSB) while enabling adaptive oncogenic pathways  
395 such as PI3K/AKT and YAP. This interplay may explain why *in vivo* tumors harboring truncated  
396 p53 displayed reduced cell death and greater growth maintenance under compression, ultimately  
397 conferring a growth advantage in mechanically hostile microenvironments. These observations  
398 highlight a synergistic link between genetic lesions and mechano-transduction, positioning  
399 mechano-genetic interactions as critical determinants of tumor aggressiveness and potential  
400 therapeutic targets. To go further, future studies should therefore explore the mechano-genetic  
401 interplay in more complex carcinogenesis models, integrating single-cell analyses to dissect  
402 heterogeneity in response to compressive stimuli.

403  
404  
405  
406  
407  
408  
409  
410

This study proposes that cells carrying truncated p53 showed a remarkable ability to withstand compressive stresses compared to their wild-type counterparts. At long term, our findings raise opportunities for solid cancer therapeutic targeting. As targeting mechano-sensitive pathways such as PI3K–AKT may represent a promising therapeutic avenue in patient's care, p53 mutational status could serve as a biomarker for predicting tumor adaptation to mechanical stress and efficiency of mechanotherapies to be developed in the future (70).

## 411 Materials and Methods:

412

### 413 Plasmids, sub-cloning and mutagenesis

414 *p53<sup>R172H</sup>* and *p53<sup>R172H;R210\*</sup>* cDNAs were amplified by polymerase chain reaction (PCR) using  
415 CloneAmp™ HiFi PCR Premix (Takara Bio Inc, Shiga, Japan) according to the manufacturer's  
416 protocol, primers listed in Supporting Table 2 and sub-cloned in pSBtet-GFP-Neomycin (pSBtet-  
417 GN; Addgene plasmid # 60501; a gift from R. Marschalek (71) using engineered SfiI cloning sites.  
418 *p53<sup>R172H</sup>* mutation and *p53<sup>R172H;R210\*</sup>* mutation and stop codon were inserted using the QuikChange  
419 II XL mutagenesis kit (Agilent, Santa Clara, CA, USA) and the primers listed in Supporting Table  
420 2.

421 Amplicons were then digested 30 min to 1 h at 50°C with SfiI (NEB Ipswich, MA, USA). The  
422 ligations were performed 30 min at room temperature using DNA Ligation Kit, Mighty Mix (Takara  
423 Bio Inc, Shiga, Japan). pCMV(CAT)T7-SB100 plasmid coding for Sleeping Beauty Tranposase  
424 (Addgene plasmid # 34879) was a gift from Z. Izsvák (72). All the plasmid constructions were  
425 validated by sequencing using primers listed in Supporting Table 2.

426

### 427 Cell culture, transfections and stable cell lines generation

428 Pancreatic cancer cells (KRAS<sup>G12D</sup> mouse PDAC derived cells (73) and induced Mouse Embryonic  
429 Fibroblasts (iMEF)(74) were cultured in Dulbecco's Modified Eagle Medium (DMEM) (GIBCO;  
430 #61965026) supplemented with 10% fetal bovine serum (Eurobio Scientific; #CVFSVF00-01),  
431 Penicillin-Streptomycin 50 U/mL and 50 µg/mL respectively (Sigma-Aldrich; #P0781), L-  
432 Glutamine 2 mM (Sigma-Aldrich; #G7513) and Plasmocin 25 µg/mL (InvivoGen; #ant-mpp) and  
433 maintained at 37°C in humidified atmosphere with 5% CO<sub>2</sub>. For transient transfections, cells were  
434 grown in 60 mm dishes and transfected with 3 µg plasmid, using jetPRIME® (Polyplus-  
435 Transfection, Illkirch-Graffenstaden, France) for 24 h. DNA was transfected 24 h after plating the  
436 cells on 60 mm dishes, and the medium was changed every day. For stable transfections, pancreatic  
437 cells were grown in 35 mm dishes. Cells in each well were transfected with 1.9 µg plasmid (pSBtet-  
438 GN, pSBtet-GN-*p53<sup>R172H</sup>* or pSBtet-GN-*p53<sup>R172H;R210\*</sup>*) and 100 ng of pCMV(CAT)T7-SB100  
439 vector, using jetPRIME® (Polyplus-Transfection, Illkirch-Graffenstaden, France). Twenty-four  
440 hours after transfection, cells were treated with 1 mg/mL G418 for 7 days. GFP-positive cells were  
441 sorted using LSR Fortessa™ X-20 Cell Analyzer (BD, Franklin Lakes, USA) and distributed one  
442 cell per well for clonal selection. After growth for 5 days in DMEM, 10% FBS, 2 mM L-Glutamine,  
443 Penicillin-Streptomycin (50 U/mL and 50 µg/mL), each clone was treated with 1 mg/mL G418 for  
444 2 weeks and the stability of the transfected vectors was monitored by detecting GFP fluorescence.  
445 Cells were treated with 0.5 µg/mL doxycycline for 5 days to induce *p53<sup>R172H</sup>* and *p53<sup>R172H;R210\*</sup>*.  
446 KRAS<sup>G12D</sup> mutated cells were annotated in the text: K<sup>+</sup>; KRAS<sup>G12D</sup>*p53<sup>R172H</sup>* annotated: K<sup>+</sup>*p53<sup>M</sup>* and  
447 KRAS<sup>G12D</sup>*p53<sup>R172H;R210\*</sup>* annotated: K<sup>+</sup>*p53<sup>M:T</sup>* (Figure 1B, Supp Figure 1).

448

### 449 Normalized cell number assay

450 Cells were rinsed with PBS (Eurobio Scientific, #CS1PBS 0101) and fixed for 15 min using PBS  
451 containing 10% methanol and 10% acetic acid. Cells were stained for 15 min using crystal violet  
452 (Sigma Aldrich; #HT90132). Images were taken using Chemidoc™ Imaging System (BioRad) and  
453 quantified using ImageJ software.

454

### 455 Spheroids generation and agarose confinement

456 1x10<sup>3</sup> KRAS<sup>G12D</sup>, KRAS<sup>G12D</sup>*p53<sup>R172H</sup>* and KRAS<sup>G12D</sup>*p53<sup>R172H;R210\*</sup>* PDAC cells were mixed in 10 µL  
457 droplets affixed on 100 mm petri dish cover using DMEM (GIBCO; #61965026) supplemented with

458 indicated products in §*Cell culture, transfections and stable cell lines generation* and 0.5 µg/mL  
459 doxycycline for 2 days. The petri dish cover was flipped over in order to allow aggregation of cells  
460 in a meniscus formed by the hanging drop. The 100 mm petri dish was filled with 20 mL Phosphate  
461 Buffered Saline (PBS) (Sigma-Aldrich; #D8537). After 48h, spheroids were formed and harvested.  
462 Half of them were embedded in 1% low gelling temperature agarose (Sigma-Aldrich; #A0701) in  
463 Phosphate Buffered Saline (PBS) containing 0.5 mM MgCl<sub>2</sub> and 0.9 mM CaCl<sub>2</sub> respectively (Sigma-  
464 Aldrich; #D8662) to confine it and induce a growth-induced stress on cells and the other half also  
465 called group of free spheroid or no comp was deposited on 1% low gelling temperature agarose  
466 without compressive stress. Knowing the physicochemical characteristics of 1% low gelling  
467 temperature agarose, the growth-induced pressure was estimated using the following formula: (-  
468 5.772\*10<sup>-5</sup>\*100\*(R(tx)-R(t0)/R(t0))<sup>4</sup> + (0.01048\*100\*(R(tx)-R(t0))/R(t0))<sup>3</sup> + (-0.9048\*100\*(R(tx)-  
469 R(t0)) / R(t0))<sup>2</sup> + (56.25\*100\*(R(tx)-R(t0)) / R(t0)) + 0.03247 with R(tx)= spheroid radius at t (day  
470 2, day 4 or day 6) and R(t0)= spheroid radius at day 0 (75, 76). This formula was validated for early  
471 growth (when spheroid radius increases by less than 50%). Day 0 was considered at 1% low gelling  
472 temperature agarose spheroid embedded day (Supp Figure 1D). All confined and not confined  
473 spheroids were cultured in DMEM, 10% FBS, 2 mM L-Glutamine, Penicillin-Streptomycin (50  
474 U/mL and 50 µg/mL) with 0.5 µg/mL doxycycline. 1% low gelling temperature agarose is  
475 permissive to medium substances and oxygen (77, 78). No necrotic cores were observed analyzing  
476 spheroids in brightfield. All these spheroids were used to analyze spheroid growth (radius  
477 measurement), western blot, RNA sequencing, RT q-PCR.  
478

#### 479 **siRNA transfections in spheroids**

480 Spheroids were performed as described in § *Spheroids generation and agarose confinement*. During  
481 spheroids formation, cell droplets were transected with 10 nM siRNA (siRNA scramble, siRNA  
482 against *c-Fos*, siRNA against *Fosb* or siRNA against *c-Fos* and *Fosb* described in Supporting Table  
483 2) using jetPRIME® (Polyplus-Transfection, Illkirch-Graffenstaden, France) for 48 h. After  
484 spheroid formation, they were maintained in 10 nM siRNA medium or in 1% agarose + siRNA  
485 medium for 6 days of spheroid growth. To maintain 10 nM siRNA concentration along the  
486 experiment, medium was replaced by fresh medium + siRNA each 48 h.  
487

#### 488 **Protein extraction from cells and spheroids**

489 For one loaded sample, 12 spheroids were harvested in 15 mL tube. For embedded spheroids, 1%  
490 agarose was dissolved using solubilisation buffer (QiAquick®, Qiagen, Hilden, Germany) for 10  
491 min at 50°C. Spheroids were spined down in a 15 mL tube and supernatant was removed. Spheroids  
492 were lysed and resuspended in a lysis buffer containing 150 mM NaCl, 50 mM Tris, 1 mM EDTA,  
493 1% Triton, 2 mM dithiothreitol (DTT), 2 mM Sodium fluoride, 4 mM Sodium Orthovanadate and  
494 supplemented with protease inhibitors (Complete protease inhibitors, Roche). After a 20 min  
495 incubation on ice, a 10 min centrifugation was performed at 12,000g and 4°C and the supernatant  
496 was collected. Protein concentration was measured using Bicinchoninic assay (BC Assay Protein  
497 Quantification Kit, #3082, Interchim). For 2D cells, cells were rinsed with PBS and detached by  
498 scrapping in PBS. Cells were harvested through a 5min centrifugation at 3,000g and 4°C and lysis  
499 buffer was added in cells as above protocol.  
500

#### 501 **Western Blot and simple Western Blot**

502 20 µg of proteins were separated on a 10% polyacrylamide gel and transferred on nitrocellulose  
503 membranes (Amersham™ Protran®; #106000004) using Trans-Blot® Turbo™ (BioRad). Blocking  
504 was performed through a 1h incubation in 5% low fat milk in TBST. Membranes were incubated  
505 overnight at 4°C with primary antibodies in TBS-Tween 0.1%, 5% Bovine Serum Albumin as  
506 indicated in Supporting Table 2. Then, membranes were rinsed three times with Tris-buffered saline  
507 0,1% Tween (TBS-Tween 0.1%), incubated for 1h with secondary antibodies coupled to a  
508 horseradish peroxidase, in 1% low fat milk described in Supporting Table 3. Membranes were next  
509 washed three times (1 min, 5 min and 10 min) with TBS-Tween 0.1%. Proteins were detected  
510 through chemiluminescence (Clarity™ Western ECL Substrate; BioRad; #1705061) using  
511 Chemidoc™ Imaging System (BioRad) and quantified using ImageJ software. ≥3 independent  
512 replicates were performed for each protein analyzed.

513

514 For simple western blot, 2 µg of proteins were separated on a 10% polyacrylamide gel. Samples  
515 were prepared according to the manufacturer recommendations: 12-230 kDa Separation Module  
516 Catalog #SM-W001 (Protein Simple-Bio-Techne, Minneapolis, MN, USA). Briefly, standard pack  
517 reagents were prepared (400 mM DTT, 20 µL of 10X Sample buffer and 20 µL of 400 mM DTT in  
518 5X Fluor master mix, and 20 µL of water in ladder). Samples were prepared using 5X Fluor master  
519 mix and gently mixed by up and down pipetting. They were denatured 5 min at 95°C, vortex and  
520 spin down. Reagent, samples and primary/secondary antibodies (listed in Supporting Tables 2-3)  
521 were loaded in Jess Automated Western Blot System® (Protein Simple-Bio-Techne, Minneapolis,  
522 MN, USA) and results were analyzed using Compass software (Compass Software GmbH,  
523 Dortmund, Germany). Signal linearity in JESS was in the range where the detected signal was  
524 directly proportional to the protein amount, ensuring accurate and reliable quantification.

525

## 526 **2D Immunostaining and microscopy**

527 Cells were cultured on glass coverslips. After compression (described in (10)), cells were fixed with  
528 4% PFA in PBS for 10min and then permeabilized with 0.1% Triton in PBS for 5min. Cells were  
529 blocked in blocking solution (1% BSA in PBS) for 30min. Samples were incubated with p53/GFP  
530 primary antibodies (Supporting Table 2) diluted into blocking solution overnight at 4°C. Cells were  
531 washed with PBS and then incubated with the Alexa Fluor® 488 secondary or Alexa Fluor® 594  
532 antibodies diluted into blocking solution for 1h (Supporting Table 3). Samples were washed with  
533 PBS and incubated with DAPI (Sigma; #D9542 0.1µg/ml) as nuclear counterstain, for 3 min.  
534 Coverslips were mounted in Fluoromount-G (Invitrogen; # 00-4958-02). Images were acquired with  
535 a Plan Aprochromat 63x ON 1.4 oil immersion objective using a Zeiss LSM780 confocal  
536 Microscope using Airyscan with post-processing orthogonal projection.

537

## 538 **3D Immunostaining and imaging**

539 An optimized immunofluorescence workflow on 3D spheroids was developed. Spheroids (n =12 per  
540 conditions) were washed twice in PBS. Fixation was performed in freshly prepared 4%  
541 paraformaldehyde (PFA) for 1 h 30 min at room temperature under gentle agitation.  
542 Permeabilization was achieved with 0.5% Triton X-100 in PBS for 30 min, followed by blocking  
543 for at least 2h in 3% BSA containing 0.2% Triton X-100. All steps were carried out at room  
544 temperature on a tilted metallic support to facilitate uniform exposure. Primary antibody incubation  
545 was optimized for each target (antibody titration, incubation time, and buffer composition). Primary  
546 antibodies (listed in Supporting Table 3) were diluted in antibody buffer (3% BSA + 0.1% Triton  
547 X-100) and incubated for 2 days at 4 °C under gentle agitation on an inclined metallic support to  
548 ensure homogeneous antibody penetration. All experimental groups, 2 spheroids for each (not  
549 compressed vs compressed; K+ vs K+p53M; T) were processed in parallel with same protocol  
550 conditions to ensure comparability. After primary incubation, spheroids were washed three times in  
551 1% BSA + 0.1% Triton X-100 in PBS, with a final 20 min wash in 0.1% Triton PBS under agitation.  
552 Residual buffer was carefully aspirated before proceeding to secondary labeling. Secondary labeling  
553 was performed in antibody solution (1% BSA + 0.1% Triton X-100 in PBS) containing rabbit AF568  
554 and DAPI (Supporting Tables 3,4), incubated overnight at 4 °C under gentle agitation on a tilted  
555 metallic support. Stained spheroids were washed in PBS extensively before clearing and mounting.  
556 Clearing efficiency was strongly dependent on spheroid size and intrinsic cell line-specific  
557 properties, notably extracellular matrix content. Post-fixation before clearing improved staining  
558 preservation. Spheroids were post-fixed with fresh prepared 4% PFA for 30 min, washed twice in  
559 PBS, and cleared with RapiClear 1.49 (SUNJin Lab, Taiwan) for at least 24 h. Samples were  
560 mounted using dual spacers (0.25 µm) (SUNJin Lab, Taiwan) to avoid deformation, and very  
561 importantly with refractive index matched to the objective immersion medium to optimize depth  
562 imaging.

563 We also performed microscopy and workflow optimization. 3D imaging was performed using a  
564 Zeiss LSM780 confocal microscope equipped with a 25× long-working-distance multi-immersion  
565 objective (NA 0.8) with adjustable correction collar (“multi-immersion ring”). Z-stacks were  
566 acquired every 2.8 µm using sequential scanning of each channel. Excitation was achieved with **405**  
567 **nm (DAPI)** and **561 nm (AF568)** lasers. GaAsP detector gain and emission windows were

568 optimized to prevent cross-talk and saturation. Z-compensation was applied to preserve signal  
569 uniformity with depth, according to Nürnberg *et al.*, 2020 (79).

570  
571 **RNA extraction**

572 For RNA extraction, 12 spheroids were harvested for each replicate in each condition in 15 mL tube.  
573 For embedded spheroids, 1% agarose was dissolved using solubilisation buffer (QiAQuick®,  
574 Qiagen, Hilden, Germany) for 10 min at 50°C. Spheroids were spined down in a 15 mL tube and  
575 supernatant was removed. RNA was extracted using RNAqueous™-Micro Total RNA Isolation Kit  
576 #AM1931 (ThermoFisher Scientific, Waltham, MA, USA) according to the manufacturer  
577 recommendations. Briefly, cells were lysate using lysis buffer from Isolation Kit #AM1931 for 5  
578 min at 4°C temperature and lysate was loaded in RNA collection column and centrifuge at 10000g  
579 for 1 min at 4°C. Column were rinsed and centrifuge at 10000g for 1 min at 4°C two times using  
580 wash buffer from Isolation Kit #AM1931. Elution buffer from Isolation Kit #AM1931 was added in  
581 the RNA collection column for 5 min at 4°C. Column were inserted in collection microtube and  
582 centrifuge at 10000g for 1 min at 4°C. RNA was collected in the collection tube and RNA  
583 concentration was measured using NanoDrop™ 2000 (ThermoFischer scientific, France). Quality  
584 of samples was controlled by NanoDrop (NanoDrop 2000 (Thermo Fisher Scientific), Qubit  
585 fluorometry (Invitrogen, Carlsbad, CA) and Fragment Analyzer (Agilent, Les Ulis, France) for  
586 measuring concentration and calculation of RNA integrity number (RIN). Samples with RIN<7 were  
587 not sequenced.

588  
589 **Reverse transcription and quantitative PCR**

590 cDNA synthesis was performed with iScript kit (BioRad; #1708891) according to the manufacturer  
591 protocol using C1000 Touch Thermal Cycler (BioRad) and the following conditions: annealing: 5  
592 min at 25°C, reverse transcription: 20 min at 46°C, reverse transcriptase inactivation: 1 min at 95°C.  
593 cDNAs were diluted to a half in RNase free water. Gene expression was quantified with the SsoFast  
594 EvaGreen supermix kit (BioRad, #1725204) using a thermocycler (StepOne™ #4376374; Software  
595 v2.2.2) with the following conditions: 20 sec at 95°C, 40 denaturation cycles: 3 sec at 95°C,  
596 annealing and elongation: 30 sec at 60°C. β-actin was used as housekeeping gene. The primers used  
597 are described in Supporting Table 1 and each amplicon was validated by sequencing. Gene  
598 expression quantification was performed using the Livak method:  $2^{-(\Delta\Delta C(T))}$  (80). All RT-qPCR  
599 fragments were validated by sequencing using primers listed in Supporting Table 2. Distinct RNA  
600 samples  $\geq 4$  were analyzed, each amplification was performed in technical duplicate.

601  
602 **RNA sequencing and bioinformatics analysis workflow**

603 RNA was extracted using previous protocol (§RNA extraction). RNA sequencing was performed by  
604 the Next Generation Sequencing Service (NGS, Azenta Life Sciences (Burlington, MA, USA)).  
605 Quality of samples was controlled by NanoDrop (NanoDrop 2000 (Thermo Fisher Scientific), Qubit  
606 fluorometry (Invitrogen, Carlsbad, CA) and Fragment Analyzer (Agilent, Les Ulis, France) for  
607 measuring concentration and calculation of RNA integrity number (RIN). Samples with RIN<7 were  
608 not sequenced.

609 cDNA libraries were sequenced using Illumina NovaSeq, PE 2x150 sequencing platform and  
610 configuration with estimated data output of 12 G of raw data per sample.

611 Bioinformatics analysis were performed by Azenta Life Sciences (Burlington, MA, USA). Read  
612 quality control was performed using FastQC software v.0.11.9 (Babraham Institute, Cambridge,  
613 UK). Sequence reads were trimmed to remove adapter sequences and nucleotides with poor quality  
614 using Trimmomatic v.0.36 (RWTH Aachen University, Germany). The trimmed reads were mapped  
615 to the *Mus musculus* GRCm38 reference genome (ENSEMBL) using the STAR aligner v.2.5.2b.  
616 The STAR aligner is a splice aligner that detects splice junctions and incorporates them to help align  
617 the entire read sequences. BAM files were generated as a result of this step. Unique gene hit counts  
618 were calculated by using featureCounts from the Subread package v.1.5.2. The hit counts were  
619 summarized and reported using the gene\_id feature in the annotation file. Only unique reads that fell  
620 within exon regions were counted. After extraction of gene hit counts, the gene hit counts table was  
621 used for differential expression analysis. A comparison of gene expression between the customer-  
622 defined groups of samples was performed using DESeq2 v.1.40.2. The Wald test was used to

623 generate p-values and log2 fold changes. Genes with an adjusted p-value < 0.05 and absolute log2  
624 fold change > 1 were called as differentially expressed genes for each comparison. The results of  
625 the number of significantly differentially expressed genes for all comparisons were provided. Data  
626 are stored in an open access repository (accession number available upon request).

627 A gene ontology analysis was performed on the statistically significant set of genes by implementing  
628 the software GeneSCF v.1.1-p2. The Gene Ontology (GO) list was used to cluster the set of genes  
629 based on their biological processes and determine their statistical significance. The p-value in GO  
630 enrichment analysis represents the probability that the observed overrepresentation of a GO term  
631 within a gene set occurs. A low p-value indicates significant enrichment of the GO term. A list of  
632 genes clustered based on their GO was generated.

633

### ***In vivo compression device and associated protocol***

634 Our lab developed a 3D printed minimally invasive compression device compatible with animal  
635 experimentation. It allowed the application of *in vivo* allo/xeno-graft unidirectional stress at a given  
636 unit calibrated using the force sensor and conferring compressive stress to allo/xenograft tumors.  
637 This device is uniquely available and easy-to-produce for compressing subcutaneous xenografts. It  
638 is adaptable to diverse subcutaneous allo/xeno-grafts. This device was 3D printed using a  
639 biocompatible, transparent and gas permeable PDMS (poly-di-methyl-siloxan) polymer and is  
640 composed of a 20 mm length, 5 mm large screw entering into a 5 mm diameter holder for screw  
641 entry point on the top and 10 mm diameter part placed on the skin, encompassing the tumor  
642 allo/xenograft (Supp Figure 3A,B). Associated to the device, we developed a compression protocol  
643 associated: 300,000 mouse pancreatic cancer cells were injected subcutaneously in the interscapular  
644 localization of Nude mouse (location allowing support on the spine). Injection of 300,000 cells  
645 enables daily monitoring of tumor growth without rapidly exceeding the device holder's maximum  
646 size and the ethically acceptable volume of 1000 mm<sup>3</sup>. Once the cells were injected, the tumor  
647 growth was controlled using tumor volume and the compression device was affixed by 8 stitches on  
648 the mouse skin at 100 mm<sup>3</sup> ( $\pm$  20 mm<sup>3</sup>). The tumor was compressed for 4 days (Supp Figure 3B).  
649 The compression at Day 0 (day of initial compression) was set at a fixed value using a force sensor  
650 (FlexiForce® OEM Kit, Teckscan, South Boston, MA, USA) apposed between the subcutaneous  
651 tumor and the screw. The force sensor was previously calibrated using a series of known masses to  
652 ensure accurate and reliable force measurements. Moreover, mice tumors were visually controlled  
653 every day for 4 days and volumes were measured at Day 0 and Day 4 (Supp Figure 3B). In parallel,  
654 300,000 mouse pancreatic cancer cells were injected subcutaneously in the interscapular localization  
655 of the mouse, and tumor volume was measured each day during 4 days and compared to compressed  
656 allograft tumor. Tumor volume was assessed using this formula  $V = l^2 \times L \times 0.52$ . After compressive  
657 device was removed and tumors were harvested for analysis.

658

### **Quantification of mechanical stresses accumulated during tumor development using the 659 “punch/relaxation” method**

660 Inspired by the principle of “hole” or “punch/relaxation” method used in structural mechanics  
661 (ASTM E837-20), we designed a protocol for biological objects. To ensure reliable measuring,  
662 standardisation of the method was developed as described in Marty *et al.*, in preparation. This  
663 method can be applied to PDAC tumors and also to other types of tumors allo/xeno-graft in mouse.  
664 300,000 mouse pancreatic cancer cells harboring the different genotypes K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup> and K<sup>+</sup>p53<sup>M;T</sup>  
665 were injected subcutaneously in the interscapular localization of NSG mice. After 21-28 days,  
666 tumors were dissected -with average similar volumes in each group (maximal volume was 563 mm<sup>3</sup>)  
667 measured with non invasive echography imaging (Aixplorer®, Supersonic, Paris, France). These  
668 tumors were embedded using 2% low gelling temperature agarose (Sigma-Aldrich; #A0701) as  
669 described in (39). After polymerization of the agarose around the tumor (15 min at 4°C), a hole was  
670 made in the tumor (“punch”) using a 4 mm diameter punch (#49401, Pfm medical, Merignac,  
671 France). Before the “punch”, a mode B ultrasound and an elastography shear wave measurement  
672 (Aixplorer®, Supersonic, Paris, France) were performed. A series of mode B ultrasound images was  
673 then taken each 30 sec during 1400 sec of tumor relaxation after “punch”. Post-processing of images  
674 based on pixel vectorization (Davis© softaware and python scripts) gives access to displacement,  
675 strain and stress fields in the tumor during the relaxation of the biopsy “hole ” and provided  
676

678 correlations with tumor genotypes. Specific software was developed to help classification and data  
679 storage of images; it is available here:  
680 [https://archive.softwareheritage.org/browse/directory/c7411303bd02da1a8558ca3d49b7eee0e9e81baf/?origin\\_url=https://github.com/FredPont/remove\\_subdirs&revision=00f3d00ff74bfef6f1ba8ca68af39c6b109a2900&snapshot=61ac07b36df6deb7a0b345c6c75a5f3eb00f3c51](https://archive.softwareheritage.org/browse/directory/c7411303bd02da1a8558ca3d49b7eee0e9e81baf/?origin_url=https://github.com/FredPont/remove_subdirs&revision=00f3d00ff74bfef6f1ba8ca68af39c6b109a2900&snapshot=61ac07b36df6deb7a0b345c6c75a5f3eb00f3c51)  
683 [https://github.com/FredPont/remove\\_subdirs/releases/tag/v20250430](https://github.com/FredPont/remove_subdirs/releases/tag/v20250430).  
684

### 685 **Immunohistochemistry**

686 Immunohistochemistry was performed on 4  $\mu$ m sections of formalin-fixed paraffin-embedded  
687 tissues. Briefly, tissue sections were deparaffinized 3x 5 min in xylene, 3x 5 min in 100% and 1x in  
688 70% ethanol and washed 1x in tap H<sub>2</sub>O and 1x in deionized H<sub>2</sub>O. The antigen unmasking was  
689 performed using autoclave heating at 121°C, 250 bar for 12 min (Advantage-Lab, AL02-03) in 100  
690 mM sodium citrate pH 6.0. Sections were blocked for 60 min at room temperature in humid chamber  
691 using 2.5% horse serum blocking solution (Vector Lab, MP-7401)). Primary antibodies were diluted  
692 in antibody diluent (Dako REAL AG-S202230-2) and incubated at 4°C overnight in humid chamber.  
693 Sections were blocked using endogenous peroxidase in PBS + 3% H<sub>2</sub>O<sub>2</sub> for 10 min at room  
694 temperature. After, anti-rabbit Immpress solution (Vector Lab, MP-7401) was used as secondary  
695 antibody detection for 60 min at room temperature in humid chamber. Antibody staining was  
696 revealed using DAB peroxidase substrate (Vector Lab, SK-4105) respectively 30 sec for Ki67 and  
697 60 sec for CC3 staining. Mayer's hematoxylin (Merck, 109249) counterstain was performed for 60  
698 sec, following by washes in tap H<sub>2</sub>O. Sections were briefly rinsed in 0.1% HCl and washed using  
699 tap H<sub>2</sub>O. Coverslips were placed on slides using Glycergel solution (Dako, C0563). Pictures were  
700 taken using Axioscan 7 imager (Carl Zeiss, Germany) and observed using NDP software (San  
701 Francisco, USA). Quantifications were performed using QuPath software (81), using Pixel classifier  
702 tool. The following parameters were used: for Ki67, Resolution: very high, Sigma: 0-3, Threshold:  
703 0.23-0.45, Above: Ki67, Below: Negative; for For CC3: Resolution: very high, Sigma: 0-0.5,  
704 Threshold: 0.25-0.5, Above: CC3, Below: Negative. Negative controls were used to validate specific  
705 stainings. Primary and secondary antibodies were described in Supporting Tables 3 and 4.  
706

### 707 **Picro Sirius red coloration**

708 Picro Sirius red coloration were performed on 4  $\mu$ m sections of formalin-fixed paraffin-embedded  
709 tissues. Briefly, tissue sections were deparaffinized as described above, followed by Picro Sirius red  
710 solution (Abcam, ab15068, Cambridge, UK) incubation for 30 min at room temperature. After  
711 sections were 2x briefly washed in 0.5% acetic acid, after dehydrated in 95% ethanol for 2 min,  
712 100% ethanol and xylene for 5 min. Coverslips were placed on slides using Eukitt solution (Sigma,  
713 03989). Pictures were taken with Axioscan 7 imager (Carl Zeiss, Germany) using circular polarized  
714 light and observed using Zen software (Carl Zeiss, Germany). Quantification were performed using  
715 QPath software(81), using Pixel classifier.  
716

### 717 **Animals**

718 All animal procedures were conducted in compliance with the Ethics Committee pursuant to  
719 European legislation translated into French Law as Decret 2013-118 dated February, 1<sup>st</sup> 2013  
720 (APAFIS#2020101311044955). Grafts were performed in interscapular localization of male Swiss  
721 Nude mice (Charles River Laboratories, France). Grafts for *ex-vivo* mechanical stress quantification  
722 were performed in NSG mice from our own breeding. Mice were housed and bred under specific  
723 pathogen-free (SPF) conditions in an accredited animal facility. Animals were maintained on a 12-  
724 hour light/dark cycle (lights on at 07:00) at a controlled temperature of 22  $\pm$  1 °C and relative  
725 humidity of 55  $\pm$  5%. Food and water were provided ad libitum. Cages were enriched with wood  
726 shavings, bedding, and at least one additional item (cardboard structure, igloo, or sizzle nest tube)  
727 to promote environmental enrichment.  
728

### 729 **Statistical analysis**

730 Comparisons between two experimental groups were performed using a paired two-tailed Student  
731 *t*-test (*in vitro*) and Mann-Whitney tests (*in vivo*). Comparisons between more than two experimental

732 groups were performed using two-ways ANOVA. p-value<0.05 was considered significant. All  
733 analysis was performed using GraphPadPrism 10.1.2 software.

734  
735 **Acknowledgments**  
736

737 We thank our colleagues for their critical reading of the manuscript. We thank the Pôle  
738 technologique du Centre de Recherche en Cancérologie de Toulouse (Manon Farcé, Laetitia Ligat,  
739 Laura Lestienne, Tiphaine Fraineau, Frédéric Pont, Emeline Sarot), for the technical support in  
740 imaging, vectoriology, proteomics and cytometry platforms. We thank the I2MC We-Met platform  
741 in Toulouse (Alexandre Lucas and Corinne Bernis) for their help in simple western experiment and  
742 analysis. We thank Christèle Segura from I2MC histology platform. We thank Rémi Coursson from  
743 LAAS-CNRS for his support in 3D printing. We acknowledge Yvan Nicaise for providing  
744 bioinformatics expertise and help for histology. We address a special thanks to Cedric Baudelin,  
745 Emilie Sinhlivong, Tristan Chapon, Amanda Corini, Pierre-Paul Colombo and Ibou Ka from animal  
746 facilities, CREFRE-Toulouse (Centre régional d'exploration fonctionnelle et de ressources  
747 expérimentales), as well as ENI (Carine Pestouri) for their help and support for all in vivo  
748 experiments and non-invasive imaging. Views and opinions expressed are, however, those of the  
749 author only and do not necessarily reflect those of the European Union or the European Research  
750 Council. Neither the European Union nor the granting authority can be held responsible for them.

751  
752 **Fundings:**  
753

754 Fondation Toulouse Cancer Santé (Mecharesist)  
755 Inserm Plan Cancer (PressDiagTherapy; MECHAEVO; MEchanoStem)  
756 Inca PLBIO INCa\_16095  
757 Toucan ANR Laboratory of Excellence  
758 MSCA-ITN/ETN PIPgen (Project ID: 955534)  
759 Fondation ARC (ARCPJA2021060003932, ARCPGA2022120005630\_6362-3)  
760 Université de Toulouse Emergence (MECACAN)  
761 Cancéropôle GSO Emergence de Consortium  
762 ERC Starting grant UnderPressure grant agreement number 101039998

763  
764 **Author contributions:**  
765

766 Experimentation, analysis, visualisation and interpretation of data: MDL, SA, NT, TM, RDA, BT,  
767 PS, PA, MD and JGG.  
768 Supervision of students: MDL, PA, JGG  
769 Supervision of staff: JGG  
770 Methodology: MDL, SA, NT, TM, RDA, BT, PS, PA, MD and JGG  
771 Drafting of the manuscript: MDL and JGG  
772 Revising the manuscript: all authors  
773 Conceptualization of funded project, obtained funding, project administration, project supervision,  
774 validation: MDL, PA, MD and JGG

775  
776 **Competing interests:**

777 The authors disclose no conflicts.

779  
780 **Data and materials availability:**

781 All data are available in the main text or supplementary materials.

783 We generated and stored bulk RNA sequencing transcriptomic data available upon request.  
784

785 **Figures and Tables:**  
786

787 **Figure 1. p53 mutation prevents the 3D growth reduction normally induced by confinement**  
788 **in PDAC spheroids. A.** Current model of solid cancer development: normal cells evolve to pre-  
789 cancerous lesion, then to invasive carcinoma; the mechanical context is deeply modified in fastly  
790 growing lesions, as extracellular matrix (ECM) remodels during those stage progressions. Stiffening  
791 and swelling of the matrix lead to the confinement of cancer initiating and cancer cells. The genetic  
792 context, such as KRAS and p53 genetic alterations, evolves during carcinogenesis and influences  
793 tumor development. CAF: cancer associated fibroblast. **B.** Schematic of isogenic cell line creation:  
794 from parental KRAS<sup>G12D</sup> pancreatic cancer cells (PDAC cells), the Tet-ON stable expression system  
795 allowed protein expression from empty vector (GFP only in mutated KRAS<sup>G12D</sup> background: K<sup>+</sup>) or  
796 from p53<sup>R172H</sup> expression vector (KRAS<sup>G12D</sup>; p53<sup>R172H</sup>: K<sup>+</sup>p53<sup>M</sup>). **C.** Schematic of experimental  
797 setup: 1000 cells were placed on the cover of 100 mm petri dish. The cover was flipped over and  
798 using the pending droplet method, spheroids were formed in the droplet meniscus during 2 days.  
799 After spheroids generation, they were confined into 1% low gelling temperature agarose at day 0  
800 and for 6 days in order to apply on spheroids a growth induced pressure (Δ pressure). During the 6  
801 days, pictures were taken and spheroids radius were measured. Spheroids were harvested at day 6  
802 for future analysis. **D.** K<sup>+</sup> genotype spheroids (left panel), three clones of K<sup>+</sup>p53<sup>M</sup> genotype spheroids  
803 (center panel) and one clone of K<sup>+</sup>p53<sup>M</sup> genotype spheroids (right panel) were confined inducing  
804 compressive stress (Comp) compared to not compressed (No Comp). The spheroids radius R(t)/R(0)  
805 were analyzed for 6 days with Day 0 corresponding to confinement initiation. The growth curves  
806 are presented depending on the 3D growth behavior of spheroids under confinement: confinement-  
807 induced significantly decreased spheroids growth (corresponding to K<sup>+</sup> genotype, left panel); no  
808 change in growth (3 out of 4 clones from K<sup>+</sup>p53<sup>M</sup> genotype, center panel); confinement-induced  
809 significantly increased 3D growth (1 out of 4 clones from K<sup>+</sup>p53<sup>M</sup> genotype, right panel). GFP  
810 expression related to empty vector or p53<sup>M</sup> expressions in spheroids from day 0 to day 6. Scale bar  
811 corresponds to 200μm. Results were represented as mean, +/- SEM, n≥12 spheroids from  
812 independent cultures per condition. \*p-value<0.05; \*\*p-value<0.01. One representative spheroid  
813 picture was shown in each condition.  
814

815 **Figure 2. The heightened growth under confinement is explained by a truncation of p53**  
816 **protein. A.** Representative western blots of p53 and endogenous p53 truncated form (p53<sup>trunc</sup>) in  
817 KRAS<sup>G12D</sup> (K<sup>+</sup>) (first lane) and KRAS<sup>G12D</sup>; p53<sup>R172H</sup> (K<sup>+</sup>p53<sup>M</sup>) clone 1,2,3 and 4 (lanes 2 to 8). β-  
818 ACTIN was used as loading control. Doxycycline (500ng/mL) was used to induce Tet-ON stable  
819 expression of p53<sup>R172H</sup> in K<sup>+</sup>; p53<sup>M</sup> clones. **B.** Gene alterations leading to expression of truncated  
820 forms of p53 are found in 20 cancers in the TCGA cohort, including pancreatic cancer (6th position  
821 in 20 cancer types from TCGA cohort). In addition, pancreatic cancer is the first most frequent  
822 cancer in which a mutation encoding a truncation of p53 in exon 6 is found among the 20 cancers in  
823 the TCGA cohort. **C.** In 145 patients with pancreatic cancer (TCGA cohort), 20% of p53 mutations  
824 result in a truncation of the protein and 8% are specific to exon 6. **D.** From KRAS<sup>G12D</sup> pancreatic  
825 cancer cells (PDAC cells), the Tet-ON stable expression system allows protein expression of GFP  
826 in empty vector (with mutated KRAS<sup>G12D</sup> background: K<sup>+</sup>) or of p53<sup>R172H</sup> and GFP expression (in  
827 KRAS<sup>G12D</sup>background p53<sup>R172H</sup>: K<sup>+</sup>p53<sup>M</sup>) or of p53<sup>R172H;R210\*</sup> and GFP expression (KRAS<sup>G12D</sup> in  
828 background with p53<sup>R172H;R210\*</sup>: K<sup>+</sup>p53<sup>M:T</sup>) . **E.** Representative western blots of p53 and genetically  
829 engineered p53 truncated form (p53<sup>M:T</sup>) in KRAS<sup>G12D</sup> background (K<sup>+</sup>) (first lanes) and KRAS<sup>G12D</sup>;  
830 p53<sup>R172H;R210\*</sup> (K<sup>+</sup>; p53<sup>M:T</sup>) clone (lane 2). β-ACTIN was used as loading control. Doxycycline (Dox)  
831 (500ng/mL) was used to induced Tet-ON stable expression of p53<sup>R172H;R210\*</sup> in K<sup>+</sup>; p53<sup>M:T</sup> clone.  
832 p53<sup>M:T</sup>/β-ACTIN quantitative analyses were performed using ImageJ software. Results are  
833 presented as mean, +/- SEM, n≥3. \*\*p-value<0.01. **F.** The truncation in R210\* position in exon 6 is  
834 predicted to remove part of the DNA-binding domain (DBD), the two nuclear localization domains  
835 (NLS) and the oligomerization domain (OD) of p53 protein (up panel). After immunofluorescence  
836 anti-p53, the genetically engineered truncated form of p53 (K<sup>+</sup>; p53<sup>M:T</sup>) was found in the cytosol

837 while the p53 WT form was found in the nucleus of pancreatic (K<sup>+</sup>) cells. Nuclear signal corresponds  
838 to Hoechst and GFP is expressed in the cytosol of the transfected pancreatic cells. **G.** K<sup>+</sup>; p53<sup>M:T</sup>  
839 genotype spheroids were confined inducing compressive stress (Compressed) compared to no  
840 compression condition (No Compression). The spheroids radiiuses were measured at days 0, 2, 4,  
841 and 6 and day 0 (D0) corresponding to initiation of compression. This confinement significantly  
842 increased spheroids growth (dotted red curve (Compressed) compared to black dotted curve (No  
843 Compression)) (left graph). Representative images of K<sup>+</sup>; p53<sup>M:T</sup> not compressed (No Comp) (high  
844 right panel) and compressed (Comp) (low right panel) spheroids were shown. Scale bar corresponds  
845 to 200 $\mu$ m. GFP expression in spheroids from day 0 to day 6 was shown. Results are presented as  
846 mean, +/- SEM, n $\geq$ 12 spheroids per condition. \*p-value<0.05.  
847

848 **Figure 3. Mutated-truncated p53 cells lose the growth-inhibitory early AP-1 pathway gene**  
849 **response under confinement.** **A.** Principal Component Analysis (PCA) mapping represents the  
850 distribution of RNA sequencing samples divided into two groups: on one hand KRAS<sup>G12D</sup> and  
851 KRAS<sup>G12D</sup>; p53<sup>R172H</sup> (K<sup>+</sup>p53<sup>M</sup>), compressed and not compressed conditions and on the other hand  
852 the KRAS<sup>G12D</sup>, p53<sup>R172H;R210\*</sup> (p53<sup>M:T</sup>) compressed and not compressed conditions (day2). n=3 pools  
853 of 24 spheroids per condition. **B.** Heatmap representation of top 10 overexpressed genes in  
854 compressed compared to not compressed conditions in K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup> and K<sup>+</sup>p53<sup>M:T</sup> genotypes. Black  
855 squares represent top overexpressed genes in each genotype and red squares represent *c-Fos* and  
856 *Fosb* overexpression in K<sup>+</sup>p53<sup>M:T</sup> genotype **C.** Heatmap representation of *c-Fos* and *Fosb* gene  
857 expression in K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup> and K<sup>+</sup>p53<sup>M:T</sup> genotypes. Gene expression was represented as log2 Fold  
858 Change values in compressed compared to not compressed conditions. NA was represented as  
859 log2FC=0. **D.** mRNA expression of *c-Fos* and *Fosb* in compressed (Comp, red squares) vs not  
860 compressed (No comp, black dots) in K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup> and K<sup>+</sup>p53<sup>M:T</sup> genotypes. Results are presented as  
861 mean, +/- SEM, n=3 x24 spheroids per condition. \*p-value<0.05; \*\*p-value<0.01; \*\*\*p-  
862 value<0.001. **E.** Representative western blots of c-FOS and FOSB protein expression after RNA  
863 silencing against c-FOS (sicFOS), against FOSB (siFOSB) and a combination of siRNA against c-  
864 FOS and FOSB (sicFOS+siFOSB). SiCTL corresponds to smart pool of siRNA scrambled.  $\beta$ -  
865 ACTIN was used as loading control. Quantitative analyses were performed using ImageJ software  
866 and represents the fold induction of c-FOS/  $\beta$ -ACTIN and FOSB/  $\beta$ -ACTIN. Results are presented  
867 as mean, +/- SEM, n=3 per condition. \*p-value<0.05. **F.** K<sup>+</sup> K<sup>+</sup>p53<sup>M:T</sup> genotype spheroids were  
868 treated using silencing RNA against c-FOS (sicFOS), against FOSB (siFOSB) and a combination  
869 of siRNA against c-FOS and FOSB (sicFOS+siFOSB), confined (Compressed) compared to no  
870 compression condition (No Compression). SiCTL corresponds to smart pool of siRNA scrambled.  
871 The spheroids radiiuses were measured for 6 days and day 0 (D0) corresponding to initiation of  
872 compression. Results were represented as mean, +/- SEM, n $\geq$ 12 spheroids per condition. \*p-  
873 value<0.05.  
874

875 **Figure 4. Confinement activates differently PI3K-AKT pathway in mutated-truncated p53**  
876 **cells.** **A.** Gene Ontology analysis shows the enrichment of cellular mechanisms (Tyrosine kinase  
877 receptors signaling and Cell adhesion *via* plasma membrane) involving PI3K/AKT pathway in  
878 compressed KRAS<sup>G12D</sup>+p53<sup>R172H;R210\*</sup> cells vs not compressed KRAS<sup>G12D</sup>+p53<sup>R172H;R210\*</sup> cells. **B.**  
879 Heatmap shows the 66 genes of PI3K/AKT signature expression varying depending on the genetic  
880 profile under compression in K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup> and K<sup>+</sup>p53<sup>M:T</sup> genotypes. **C.** mRNA expression of PI3K  
881 class I members *Pik3ca* and *Pik3cd* in compressed (Comp, red squares) vs not compressed (No  
882 comp, black dots) in K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup> and K<sup>+</sup>p53<sup>M:T</sup> genotypes. Results are presented as mean, +/- SEM,  
883 n=3 x24 spheroids per condition. \*p-value<0.05; \*\*p-value<0.01. **D.** AKT pathway activation was  
884 analyzed using semi-quantitative measurement of AKT phosphorylation (p-AKT<sup>S473</sup>) related to total  
885 AKT (Tot AKT) and total protein (Tot Prot) using simple WB in K<sup>+</sup>; K<sup>+</sup>, p53<sup>M</sup> and K<sup>+</sup>, p53<sup>M:T</sup>  
886 spheroids (day 6). No comp: No compression; Comp: Compressed. Results are presented as mean,  
887 +/- SEM, n=3 x24 spheroids per condition. \*\*p-value<0.01. **E.** Representative maximum intensity  
888 projections (MIPs) of confocal optical sections (148–175 planes, depending on spheroid size)  
889 showing cleaved caspase-3 (CC3, magenta) and nuclei (DAPI, cyan) in K<sup>+</sup>; K<sup>+</sup>, p53<sup>M</sup> and K<sup>+</sup>, p53<sup>M:T</sup>  
890 spheroids (day 6), either not compressed (No Comp) or compressed (Comp). Insets display MIPs of  
891 cC3 (magenta) together with DAPI-stained nuclei (cyan), allowing visualization of the overall

892 spheroid size and providing spatial context for the localization of CC3 cells within the whole  
893 structure. Images were obtained with a Zeiss LSM 780 confocal microscope using a 25 $\times$  multi-  
894 immersion objective (oil/gly ring, NA = 0.8) with laser line 561 nm (CC3) and 405 nm (DAPI).  
895 RapidClear 1.49 was used for optical clearing. Scale bar = 100  $\mu$ m.  
896

897 **Figure 5. Quantification of mechanical stress at tissular level in fully grown tumors with**  
898 **indicated genotype.** **A.** Injection of 300 000 cells in interscapular zone to grow subcutaneous  
899 tumors, which were harvested to an equivalent volume. The principle of “hole” or  
900 “punch/relaxation” method used in structural mechanics was applied to agarose-coated excised  
901 tumors. Tumors were embedded using 2% low gelling temperature agarose as described in (39), to  
902 stabilise and calibrate the imaging allowing post-processing analysis. In Nia *et al.*(39), tumor was  
903 then cut to follow stress relaxation using the planar method. Our method based on punch/relaxation  
904 method allows the measurement of mechanical stress at tissue level in fully developed tumors. After  
905 polymerization of the agarose around the tumor (15 min at 4°C), a hole was made in the tumor  
906 (“punch”) using a 4 mm diameter punch. A series of elastography images (Aixplorer) was taken  
907 each 30 sec during 1400 sec of tumor relaxation after “punch”. Post-processing of images based on  
908 pixel vectorization give access to displacement, strain and stress fields in the tumor during the  
909 relaxation of biopsy “hole” to get correlations with cell/tumor genotypes. Post-processing and  
910 analysis of the images using COMSOL software v.6.2.0.339 allows us to create a tumor deformation  
911 map and infer the associated mechanical stresses to genotype of cells/tumors. **B.** Evolution of tumor  
912 volumes ( $\text{mm}^3$ ) in KRAS<sup>G12D</sup> ( $K^+$ ) (black curve), KRAS<sup>G12D</sup>+p53<sup>R172H</sup> ( $K^+p53^M$ ) (green curve) and  
913 KRAS<sup>G12D</sup>+p53<sup>R172H;R210\*</sup> ( $K^+p53^{M:T}$ ) (blue curve) tumors in 2 weeks after cancer cells injection.  $n \geq 4$   
914 tumors per genotype. **C.** Representative images of shear wave elastography in  $K^+$ ,  $K^+p53^M$  and  
915  $K^+p53^{M:T}$  tumors. Color scale of SWE measurements in kPa. **D.** Tumor volumes estimated with B-  
916 mode images taken before punch. Results are presented tumor volumes.  $n \geq 4$  tumors per genotype.  
917 No statistical differences. **E.** SWE measurements taken before punch. Results are presented as mean  
918 values measured in the tumoral area.  $n \geq 4$  tumors per genotype. **F.** Picro Sirius red collagen fibers  
919 staining, Ki67 proliferation index and cleaved caspase-3 apoptosis marker pictures and  
920 quantifications in KRAS<sup>G12D</sup> ( $K^+$ ), KRAS<sup>G12D</sup>+p53<sup>R172H</sup> ( $K^+p53^M$ ) and KRAS<sup>G12D</sup>+p53<sup>R172H;R210\*</sup>  
921 ( $K^+p53^{M:T}$ ) tumors. Scale bars represent 100  $\mu$ m. Results are presented as % of staining area/total  
922 tumor area.  $n \geq 4$  tumors per genotype. \* $p$ -value < 0.05. **G.** Visualization of tumor relaxation-  
923 displacement vectors (up panels) and mean quantification (down panel) of the relative relaxation-  
924 displacements of KRAS<sup>G12D</sup> ( $K^+$ ) (black curve), KRAS<sup>G12D</sup>+p53<sup>R172H</sup> ( $K^+p53^M$ ) (green curve) and  
925 KRAS<sup>G12D</sup>+p53<sup>R172H;R210\*</sup> ( $K^+p53^{M:T}$ ) (blue curve) tumors following the punch/relaxation method.  
926

927 **Figure 6. In vivo tumor compression shows the importance of p53 double mutant to promote**  
928 **tumor growth, by preventing intratumoral cell death.** **A.** The 3D printed minimally invasive  
929 compression device allowing application of *in vivo* allo-xenograft unidirectional force conferring  
930 compressive stress to cells (detailed in Supplementary Figure 3A,B) was affixed to the interscapular  
931 position of the mice and a force sensor was positioned to calibrate the applied pressure to graft. **B.**  
932  $K^+$  (left panel), **C.**  $K^+p53^M$  (center panel) and **D.**  $K^+p53^{M:T}$  genotype allografts were confined  
933 inducing compressive stress (Comp, red curves) compared to not compressed (No Comp, black  
934 curves). The tumor volumes were analyzed for 4 days with Day 0 corresponding to compressive  
935 device affixation. Results were represented as mean, +/- SEM,  $n \geq 4$  tumors per condition. \* $p$ -  
936 value < 0.05; \*\* $p$ -value < 0.01. **E.** Cleaved caspase 3 and Ki67 staining in 4 days compressed tumors  
937 compared to not compressed tumors in  $K^+$ ,  $K^+p53^M$  and  $K^+p53^{M:T}$  genotypes. The semi-quantitative  
938 analysis was performed calculating in % of the cleaved caspase 3 or Ki67 immunostaining area  
939 related to the total area of the tumor section. Scale bar corresponds to 200  $\mu$ m.  $n = 4$ . \* $p$ -value < 0.05.  
940 **F.** Graphical representation of PI3K/AKT pathway activation and FOS (c-FOS and FOSB)  
941 transcription factors role as a connected network in p53 mutated truncated condition ( $p53^{M:T}$ ) under  
942 confinement in 3D spheroid growth.  
943

## 944 **Supplementary Materials**

945

946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
**Figure S1. Genetic engineering of isogenic cell lines with K<sup>+</sup>p53<sup>M</sup> overexpression, validation and characterization.** **A.** Cells in each well were transfected with pSBtet-GN, pSBtet-GN-p53<sup>R172H</sup> (K<sup>+</sup>p53<sup>M</sup>) plasmids and pCMV(CAT)T7-SB100 vector. Twenty-four hours after transfection, cells were subjected to G418 for 7 days. GFP-positive cells were sorted using LSR Fortessa™ X-20 Cell Analyzer (BD, Franklin Lakes, USA) and distributed one cell per well for clonal selection. K<sup>+</sup> and K<sup>+</sup>p53<sup>M</sup> were imaged using brightfield and endogenous GFP fluorescence 7 days post sorting. **B.** The *Mus Musculus* p53<sup>R172H</sup> (K<sup>+</sup>p53<sup>M</sup>) sequence was sequenced in four clones and compared to wild-type *Mus Musculus* p53 sequence (p53<sup>WT</sup>). **C.** Representative western blots of p53 in KRAS<sup>G12D</sup> (K<sup>+</sup>) (lane 1) and KRAS<sup>G12D</sup>; p53<sup>R172H</sup> (K<sup>+</sup>; p53<sup>M</sup>) clone (lane 2).  $\beta$ -ACTIN was used as loading control. Doxycycline (Dox) (500ng/mL) was used to induce *via* Tet-ON system stable expression of p53<sup>R172H</sup> in K<sup>+</sup>p53<sup>M</sup> clone. p53<sup>M:T</sup>. Quantitative analyses were performed using ImageJ software. Results are presented as mean, +/- SEM, n=3. \*\*p-value<0.01. **D.** Spheroids from K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup>, K<sup>+</sup>p53<sup>M:T</sup> and K<sup>+</sup>p53<sup>M</sup> clone<sup>4</sup> were confined into 1% low gelling temperature agarose. Knowing the physicochemical characteristics of 1% low gelling temperature agarose growth, induced pressure was calculated using:  $(-5.772 \times 10^{-5} \times 100 \times (R(tx) - R(t0)) / R(t0))^4 + (0.01048 \times 100 \times (R(tx) - R(t0)) / R(t0))^3 + (-0.9048 \times 100 \times (R(tx) - R(t0)) / R(t0))^2 + (56.25 \times 100 \times (R(tx) - R(t0)) / R(t0)) + 0.03247$  with R(tx)= spheroid radius at day 2, and R(t0)= spheroid radius at day 0. Day 0 was considered at spheroid embedding with 1% low gelling temperature agarose and at this time, growth induced pressure was estimated 0 kPa. **E.** Growth rate (day<sup>-1</sup>) in K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup>, K<sup>+</sup>p53<sup>M</sup> clone<sup>4</sup> and K<sup>+</sup>p53<sup>M:T</sup> genotype spheroids under confinement (Comp) and not confined (No comp) conditions. **F.** Cell confluency was calculated using normalized cell number after Crystal Violet staining. K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup>, K<sup>+</sup>p53<sup>M:T</sup> and K<sup>+</sup>p53<sup>M</sup> clone<sup>4</sup> cell confluences were quantified with cell number at Day 0, Day 2, Day 4, Day 6 using the ratio D(t)/D(0). n=3. \*p-value<0.05; \*\*p-value<0.01.

970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
980  
**Figure S2. RNA sequencing sample distribution and Gene Ontology analysis of K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup>, K<sup>+</sup>p53<sup>M</sup> clone<sup>4</sup> and K<sup>+</sup>p53<sup>M:T</sup> genotypes.** **A.** Principal Component Analysis (PCA) mapping represents the distribution of RNA sequencing samples: compressed or not compressed KRAS<sup>G12D</sup> (K<sup>+</sup>), compressed or not compressed KRAS<sup>G12D</sup>; p53<sup>R172H</sup> (K<sup>+</sup>p53<sup>M</sup>), compressed or not compressed KRAS<sup>G12D</sup>; p53<sup>R172H</sup> clone<sup>4</sup> (K<sup>+</sup>p53<sup>M</sup> clone<sup>4</sup>) and compressed or not compressed KRAS<sup>G12D</sup>; p53<sup>R172H;R210\*</sup> (K<sup>+</sup>p53<sup>M:T</sup>). n=3 x24 spheroids per condition. **B.** Gene Ontology analysis shows the enrichment of cellular mechanisms in compressed KRAS<sup>G12D</sup> (K<sup>+</sup>) cells *vs* not compressed (No enrichment signature), in compressed KRAS<sup>G12D</sup>+p53<sup>R172H</sup> (K<sup>+</sup>p53<sup>M</sup>) cells *vs* not compressed, in compressed KRAS<sup>G12D</sup>+p53<sup>R172H</sup> clone<sup>4</sup> (K<sup>+</sup>p53<sup>M</sup> clone<sup>4</sup>) cells *vs* not compressed (No enrichment signature) and in compressed KRAS<sup>G12D</sup>+p53<sup>R172H;R210\*</sup> (K<sup>+</sup>p53<sup>M:T</sup>) cells *vs* not compressed.

981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
**Figure S3. In vivo compression device and protocol associated.** **A.** 3D printed and minimally invasive compression device allowing application of unidirectional force conferring compressive stress on *in vivo* allo/xenograft. This 3D printed device using PDMS (poly-di-methyl-siloxan) polymer is composed of a 20 mm length, 5 mm large screw entering into a 5 mm diameter holder for screw entry point on the top and 10 mm diameter part affixed to the skin, encompassing the tumor allo/xenograft. **B.** A compression protocol was associated to the device: 300 000 mouse cancer cells were injected subcutaneously in the interscapular localization of the mouse (location allowing support on the spine) Day 0-x. Injecting 300 000 cells enables daily monitoring of tumor growth without rapidly exceeding neither the device holder's maximum area and nor the ethically acceptable maximal tumor volume of 1000 mm<sup>3</sup>. Once the cells were injected, the tumor growth was controlled using tumor volume and the compression device was affixed by 8 stitches on the mouse skin at 100 mm<sup>3</sup> ( $\pm$  20 mm<sup>3</sup>) at Day 0 and the tumor was compressed for 4 days. During 4 days, the compression from Day 0 to Day 4 was calibrated at 5 kPa using a force sensor apposed between the subcutaneous tumor and the screw and corresponds to the positioning of the screw gently applied to the tumor. This minimal setup allows the tumor to grow and self-impose a growth-induced pressure under lateral confinement. Tumor volume was visually controlled during 4 days and measured at Day 0 and Day 4. In parallel to the compressed tumor condition, 300 000 mouse cancer cells were injected subcutaneously in the interscapular localization of the mouse, and this not compressed tumor volume was measured from 100 mm<sup>3</sup> each day during 4 days and compared to

1000 compressed allograft tumor. Day 0-x corresponds to Day 0: day of confinement initiation minus x  
1001 days for tumor development up to 100 mm<sup>3</sup> ( $\pm$  20 mm<sup>3</sup>).  
1002

1003 **Figure S4. Tumor detection time with indicated genotype.** Graphical representation of  
1004 interscapular subcutaneous tumors detection time after injection of 300 000 cells with genotypes:  
1005 KRAS<sup>G12D</sup> (K<sup>+</sup>, black dots), KRAS<sup>G12D</sup>+p53<sup>R172H</sup> (K<sup>+</sup>p53<sup>M</sup>, green dots), KRAS<sup>G12D</sup>+p53<sup>R172H;R210\*</sup>  
1006 (K<sup>+</sup>p53<sup>M;T</sup>, blue dots). Results were normalized at cell injection date, and calculated until tumor  
1007 harvest date without 4 days that represent compression days. Results were represented as mean, +/-  
1008 SEM, n $\geq$ 10 mice per condition. \*p-value<0.05.  
1009

1010 **Figure S5. *c-Fos* and *FosB* expressions in compressed tumor.** mRNA expression of *c-Fos* and  
1011 *FosB* in compressed tumors (Comp, red squares) vs not compressed (No comp, black dots) in K<sup>+</sup>,  
1012 K<sup>+</sup>p53<sup>M</sup> and K<sup>+</sup>p53<sup>M;T</sup> genotypes. Results are presented as mean, +/- SEM, n=3 per condition. \*p-  
1013 value<0.05.  
1014

1015 **Figure S6. YAP-regulated and hypoxia gene expression, their modulation after compressive  
1016 stress in tumor grafts. A.** *Yap1*, *Ccn1-Cyr61*, *Ccn2-Ctgf* and *Tead1* mRNA expression in  
1017 compressed tumors (Comp, red squares) vs not compressed (No comp, black dots) in K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup>  
1018 and K<sup>+</sup>p53<sup>M;T</sup> genotypes. Results are presented as mean, +/- SEM, n=3 per condition. \*p-value<0.05.  
1019 **B.** *Hif1 $\alpha$*  mRNA expression in compressed tumors (Comp, red squares) vs not compressed (No  
1020 comp, black dots) in K<sup>+</sup>, K<sup>+</sup>p53<sup>M</sup> and K<sup>+</sup>p53<sup>M;T</sup> genotypes.  
1021

1022 **Supporting Table 1. List of genes overexpressed in K<sup>+</sup> p53<sup>M;T</sup> spheroids under confinement.**  
1023

1024 **Supporting Table 2. List of primers and siRNA.**  
1025

1026 **Supporting Table 3. List of primary antibodies and reagents.**  
1027

1028 **Supporting Table 4. List of secondary antibodies and reagents.**  
1029

1030 **Movie S1. 3D visualization of compressive device.** Blender 4.5 software was used for 3D  
1031 visualization.  
1032

1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1080  
1081  
1082

## References:

1. A. J. Lomakin, C. J. Cattin, D. Cuvelier, Z. Alraies, M. Molina, G. P. F. Nader, N. Srivastava, P. J. Saez, J. M. Garcia-Arcos, I. Y. Zhitnyak, A. Bhargava, M. K. Driscoll, E. S. Welf, R. Fiolka, R. J. Petrie, N. S. De Silva, J. M. Gonzalez-Granado, N. Manel, A. M. Lennon-Dumenil, D. J. Muller, M. Piel, The nucleus acts as a ruler tailoring cell responses to spatial constraints. *Science* **370**, (2020).
2. J. M. Northcott, I. S. Dean, J. K. Mouw, V. M. Weaver, Feeling Stress: The Mechanics of Cancer Progression and Aggression. *Front Cell Dev Biol* **6**, 17 (2018).
3. K. R. Levental, H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. Fong, K. Csiszar, A. Giaccia, W. Weninger, M. Yamauchi, D. L. Gasser, V. M. Weaver, Matrix crosslinking forces tumor progression by enhancing integrin signaling. *Cell* **139**, 891-906 (2009).
4. N. Therville, S. Arcucci, A. Vertut, F. Ramos-Delgado, D. F. Da Mota, M. Dufresne, C. Basset, J. Guillermet-Guibert, Experimental pancreatic cancer develops in soft pancreas: novel leads for an individualized diagnosis by ultrafast elasticity imaging. *Theranostics* **9**, 6369-6379 (2019).
5. T. Stylianopoulos, R. K. Jain, Combining two strategies to improve perfusion and drug delivery in solid tumors. *Proc Natl Acad Sci U S A* **110**, 18632-18637 (2013).
6. J. A. Linke, L. L. Munn, R. K. Jain, Compressive stresses in cancer: characterization and implications for tumour progression and treatment. *Nat Rev Cancer* **24**, 768-791 (2024).
7. M. Delarue, F. Montel, D. Vignjevic, J. Prost, J. F. Joanny, G. Cappello, Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. *Biophys J* **107**, 1821-1828 (2014).
8. I. F. Rizzuti, P. Mascheroni, S. Arcucci, Z. Ben-Meriem, A. Prunet, C. Barentin, C. Riviere, H. Delanoe-Ayari, H. Hatzikirou, J. Guillermet-Guibert, M. Delarue, Mechanical Control of Cell Proliferation Increases Resistance to Chemotherapeutic Agents. *Phys Rev Lett* **125**, 128103 (2020).
9. F. Broders-Bondon, T. H. Nguyen Ho-Boulloires, M. E. Fernandez-Sanchez, E. Farge, Mechanotransduction in tumor progression: The dark side of the force. *J Cell Biol* **217**, 1571-1587 (2018).
10. M. Di-Luoffo, C. Schmitter, E. C. Barrere, N. Therville, M. Chaouki, R. D'Angelo, S. Arcucci, B. Thibault, M. Delarue, J. Guillermet-Guibert, Mechanical compressive forces increase PI3K output signaling in breast and pancreatic cancer cells. *Life Sci Alliance* **8**, (2025).
11. S. Z. Millis, D. L. Jardim, L. Albacker, J. S. Ross, V. A. Miller, S. M. Ali, R. Kurzrock, Phosphatidylinositol 3-kinase pathway genomic alterations in 60,991 diverse solid tumors informs targeted therapy opportunities. *Cancer* **125**, 1185-1199 (2019).
12. A. D. Cox, S. W. Fesik, A. C. Kimmelman, J. Luo, C. J. Der, Drugging the undruggable RAS: Mission possible? *Nat Rev Drug Discov* **13**, 828-851 (2014).
13. I. A. Prior, F. E. Hood, J. L. Hartley, The Frequency of Ras Mutations in Cancer. *Cancer Res* **80**, 2969-2974 (2020).
14. F. E. Hood, Y. M. Sahraoui, R. E. Jenkins, I. A. Prior, Ras protein abundance correlates with Ras isoform mutation patterns in cancer. *Oncogene* **42**, 1224-1232 (2023).
15. B. Vanhaesebroeck, J. Guillermet-Guibert, M. Graupera, B. Bilanges, The emerging mechanisms of isoform-specific PI3K signalling. *Nat Rev Mol Cell Biol* **11**, 329-341 (2010).
16. C. Guerra, N. Mijimolle, A. Dhawahir, P. Dubus, M. Barradas, M. Serrano, V. Campuzano, M. Barbacid, Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. *Cancer Cell* **4**, 111-120 (2003).
17. R. Baer, C. Cintas, M. Dufresne, S. Cassant-Sourdy, N. Schonhuber, L. Planque, H. Lulka, B. Couderc, C. Bousquet, B. Garmy-Susini, B. Vanhaesebroeck, S. Pyronnet, D. Saur, J.

1083 Guillermet-Guibert, Pancreatic cell plasticity and cancer initiation induced by oncogenic  
1084 Kras is completely dependent on wild-type PI 3-kinase p110alpha. *Genes Dev* **28**, 2621-  
1085 2635 (2014).

1086 18. N. Cancer Genome Atlas Research, Author Correction: Comprehensive molecular profiling  
1087 of lung adenocarcinoma. *Nature* **559**, E12 (2018).

1088 19. M. Li, D. Sun, N. Song, X. Chen, X. Zhang, W. Zheng, Y. Yu, C. Han, Mutant p53 in head  
1089 and neck squamous cell carcinoma: Molecular mechanism of gain-of-function and targeting  
1090 therapy (Review). *Oncol Rep* **50**, (2023).

1091 20. A. Mogi, H. Kuwano, TP53 mutations in nonsmall cell lung cancer. *J Biomed Biotechnol*  
1092 **2011**, 583929 (2011).

1093 21. S. Yan, F. Zhan, Y. He, Y. Zhu, Z. Ma, p53 in colorectal cancer: from a master player to a  
1094 privileged therapy target. *J Transl Med* **23**, 684 (2025).

1095 22. L. Silwal-Pandit, A. Langerod, A. L. Borresen-Dale, TP53 Mutations in Breast and Ovarian  
1096 Cancer. *Cold Spring Harb Perspect Med* **7**, (2017).

1097 23. L. Zhong, H. Li, W. Chang, Y. Ao, Z. Wen, Y. Chen, TP53 Mutations in Esophageal  
1098 Squamous Cell Carcinoma. *Front Biosci (Landmark Ed)* **28**, 219 (2023).

1099 24. J. P. Morton, P. Timpson, S. A. Karim, R. A. Ridgway, D. Athineos, B. Doyle, N. B.  
1100 Jamieson, K. A. Oien, A. M. Lowy, V. G. Brunton, M. C. Frame, T. R. Evans, O. J. Sansom,  
1101 Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer.  
1102 *Proc Natl Acad Sci U S A* **107**, 246-251 (2010).

1103 25. N. Waddell, M. Pajic, A. M. Patch, D. K. Chang, K. S. Kassahn, P. Bailey, A. L. Johns, D.  
1104 Miller, K. Nones, K. Quek, M. C. Quinn, A. J. Robertson, M. Z. Fadlullah, T. J. Bruxner,  
1105 A. N. Christ, I. Harliwong, S. Idrisoglu, S. Manning, C. Nourse, E. Nourbakhsh, S. Wani,  
1106 P. J. Wilson, E. Markham, N. Cloonan, M. J. Anderson, J. L. Fink, O. Holmes, S. H.  
1107 Kazakoff, C. Leonard, F. Newell, B. Poudel, S. Song, D. Taylor, N. Waddell, S. Wood, Q.  
1108 Xu, J. Wu, M. Pines, M. J. Cowley, H. C. Lee, M. D. Jones, A. M. Nagrial, J. Humphris,  
1109 L. A. Chantrill, V. Chin, A. M. Steinmann, A. Mawson, E. S. Humphrey, E. K. Colvin, A.  
1110 Chou, C. J. Scarlett, A. V. Pinho, M. Giry-Laterriere, I. Rooman, J. S. Samra, J. G. Kench,  
1111 J. A. Pettitt, N. D. Merrett, C. Toon, K. Epari, N. Q. Nguyen, A. Barbour, N. Zeps, N. B.  
1112 Jamieson, J. S. Graham, S. P. Niclou, R. Bjerkvig, R. Grutzmann, D. Aust, R. H. Hruban,  
1113 A. Maitra, C. A. Iacobuzio-Donahue, C. L. Wolfgang, R. A. Morgan, R. T. Lawlor, V.  
1114 Corbo, C. Bassi, M. Falconi, G. Zamboni, G. Tortora, M. A. Tempero, I. Australian  
1115 Pancreatic Cancer Genome, A. J. Gill, J. R. Eshleman, C. Pilarsky, A. Scarpa, E. A.  
1116 Musgrove, J. V. Pearson, A. V. Biankin, S. M. Grimmond, Whole genomes redefine the  
1117 mutational landscape of pancreatic cancer. *Nature* **518**, 495-501 (2015).

1118 26. Y. T. Chiang, Y. C. Chien, Y. H. Lin, H. H. Wu, D. F. Lee, Y. L. Yu, The Function of the  
1119 Mutant p53-R175H in Cancer. *Cancers (Basel)* **13**, (2021).

1120 27. N. H. Shirole, D. Pal, E. R. Kastenhuber, S. Senturk, J. Boroda, P. Pisterzi, M. Miller, G.  
1121 Munoz, M. Anderluh, M. Ladanyi, S. W. Lowe, R. Sordella, TP53 exon-6 truncating  
1122 mutations produce separation of function isoforms with pro-tumorigenic functions. *Elife* **5**,  
1123 (2016).

1124 28. M. Miller, N. Shirole, R. Tian, D. Pal, R. Sordella, The Evolution of TP53 Mutations: From  
1125 Loss-of-Function to Separation-of-Function Mutants. *J Cancer Biol Res* **4**, (2016).

1126 29. A. Ruffilli, G. Viroli, S. Neri, M. Traversari, F. Barile, M. Manzetti, E. Assirelli, M. Ialuna,  
1127 F. Vita, C. Faldini, Mechanobiology of the Human Intervertebral Disc: Systematic Review  
1128 of the Literature and Future Perspectives. *Int J Mol Sci* **24**, (2023).

1129 30. G. Guerin, D. Ambard, P. Swider, Cells, growth factors and bioactive surface properties in  
1130 a mechanobiological model of implant healing. *J Biomech* **42**, 2555-2561 (2009).

1131 31. M. Blondel, C. Machet, B. Wildemann, Y. Abidine, P. Swider, Mechanobiology of bacterial  
1132 biofilms: Implications for orthopedic infection. *J Orthop Res* **42**, 1861-1869 (2024).

1133 32. A. N. Gargalionis, K. A. Papavassiliou, A. G. Papavassiliou, Mechanobiology of solid  
1134 tumors. *Biochim Biophys Acta Mol Basis Dis* **1868**, 166555 (2022).

1135 33. M. Golo, P. L. H. Newman, D. Kempe, M. Biro, Mechanoimmunology in the solid tumor  
1136 microenvironment. *Biochem Soc Trans* **52**, 1489-1502 (2024).

1137 34. M. Kim, H. S. Shim, S. Kim, I. H. Lee, J. Kim, S. Yoon, H. D. Kim, I. Park, J. H. Jeong, C.  
1138 Yoo, J. Cheon, I. H. Kim, J. Lee, S. H. Hong, S. Park, H. A. Jung, J. W. Kim, H. J. Kim, Y.  
1139 Cha, S. M. Lim, H. S. Kim, C. K. Lee, J. H. Kim, S. H. Chun, J. Yun, S. Y. Park, H. S. Lee,  
1140 Y. M. Cho, S. J. Nam, K. Na, S. O. Yoon, A. Lee, K. T. Jang, H. Yun, S. Lee, J. H. Kim,  
1141 W. S. Kim, Clinical practice recommendations for the use of next-generation sequencing in  
1142 patients with solid cancer: a joint report from KSMO and KSP. *J Pathol Transl Med* **58**,  
1143 147-164 (2024).

1144 35. N. M. Shah, F. Meric-Bernstam, The present and future of precision oncology and tumor-  
1145 agnostic therapeutic approaches. *Oncologist* **30**, (2025).

1146 36. W. Jiang, M. Ji, Receptor tyrosine kinases in PI3K signaling: The therapeutic targets in  
1147 cancer. *Semin Cancer Biol* **59**, 3-22 (2019).

1148 37. R. Baer, C. Cintas, N. Therville, J. Guillermet-Guibert, Implication of PI3K/Akt pathway  
1149 in pancreatic cancer: When PI3K isoforms matter? *Adv Biol Regul* **59**, 19-35 (2015).

1150 38. M. Di-Luoffo, Z. Ben-Meriem, P. Lefebvre, M. Delarue, J. Guillermet-Guibert, PI3K  
1151 functions as a hub in mechanotransduction. *Trends Biochem Sci*, (2021).

1152 39. H. T. Nia, M. Datta, G. Seano, P. Huang, L. L. Munn, R. K. Jain, Quantifying solid stress  
1153 and elastic energy from excised or in situ tumors. *Nat Protoc* **13**, 1091-1105 (2018).

1154 40. J. Barbazan, C. Perez-Gonzalez, M. Gomez-Gonzalez, M. Dedenon, S. Richon, E. Latorre,  
1155 M. Serra, P. Mariani, S. Descroix, P. Sens, X. Trepat, D. M. Vignjevic, Cancer-associated  
1156 fibroblasts actively compress cancer cells and modulate mechanotransduction. *Nat Commun*  
1157 **14**, 6966 (2023).

1158 41. P. P. Provenzano, C. Cuevas, A. E. Chang, V. K. Goel, D. D. Von Hoff, S. R. Hingorani,  
1159 Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal  
1160 adenocarcinoma. *Cancer Cell* **21**, 418-429 (2012).

1161 42. M. Kalli, A. Minia, V. Pliaka, C. Fotis, L. G. Alexopoulos, T. Stylianopoulos, Solid stress-  
1162 induced migration is mediated by GDF15 through Akt pathway activation in pancreatic  
1163 cancer cells. *Sci Rep* **9**, 978 (2019).

1164 43. M. Kalli, C. Voutouri, A. Minia, V. Pliaka, C. Fotis, L. G. Alexopoulos, T. Stylianopoulos,  
1165 Mechanical Compression Regulates Brain Cancer Cell Migration Through MEK1/Erk1  
1166 Pathway Activation and GDF15 Expression. *Front Oncol* **9**, 992 (2019).

1167 44. T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy,  
1168 B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, R. K. Jain, Causes,  
1169 consequences, and remedies for growth-induced solid stress in murine and human tumors.  
1170 *Proc Natl Acad Sci U S A* **109**, 15101-15108 (2012).

1171 45. T. Stylianopoulos, The Solid Mechanics of Cancer and Strategies for Improved Therapy. *J  
1172 Biomech Eng* **139**, (2017).

1173 46. F. Mpekris, M. Panagi, C. Voutouri, J. D. Martin, R. Samuel, S. Takahashi, N. Gotohda, T.  
1174 Suzuki, P. Papageorgis, P. Demetriou, C. Pierides, L. Koumas, P. Costeas, M. Kojima, G.  
1175 Ishii, A. Constantinidou, K. Kataoka, H. Cabral, T. Stylianopoulos, Normalizing the  
1176 Microenvironment Overcomes Vessel Compression and Resistance to Nano-  
1177 immunotherapy in Breast Cancer Lung Metastasis. *Adv Sci (Weinh)* **8**, 2001917 (2021).

1178 47. C. Schmitter, M. Di-Luoffo, J. Guillermet-Guibert, Transducing compressive forces into  
1179 cellular outputs in cancer and beyond. *Life Sci Alliance* **6**, (2023).

1180 48. J. E. Ziello, I. S. Jovin, Y. Huang, Hypoxia-Inducible Factor (HIF)-1 regulatory pathway  
1181 and its potential for therapeutic intervention in malignancy and ischemia. *Yale J Biol Med*  
1182 **80**, 51-60 (2007).

1183 49. C. J. Halbrook, C. A. Lyssiotis, M. Pasca di Magliano, A. Maitra, Pancreatic cancer:  
1184 Advances and challenges. *Cell* **186**, 1729-1754 (2023).

1185 50. C. Perez-Gonzalez, G. Ceada, M. Matejcic, X. Trepat, Digesting the mechanobiology of the  
1186 intestinal epithelium. *Curr Opin Genet Dev* **72**, 82-90 (2022).

1187 51. C. Perez-Gonzalez, G. Ceada, F. Greco, M. Matejcic, M. Gomez-Gonzalez, N. Castro, A.  
1188 Menendez, S. Kale, D. Krndija, A. G. Clark, V. R. Gannavarapu, A. Alvarez-Varela, P.  
1189 Roca-Cusachs, E. Batlle, D. M. Vignjevic, M. Arroyo, X. Trepat, Mechanical  
1190 compartmentalization of the intestinal organoid enables crypt folding and collective cell  
1191 migration. *Nat Cell Biol* **23**, 745-757 (2021).

1192 52. G. Ciasca, M. Papi, E. Minelli, V. Palmieri, M. De Spirito, Changes in cellular mechanical  
1193 properties during onset or progression of colorectal cancer. *World J Gastroenterol* **22**, 7203-  
1194 7214 (2016).

1195 53. R. Nishi, Y. Oda, T. Morikura, S. Miyata, Effect of Compressive Stress in Tumor  
1196 Microenvironment on Malignant Tumor Spheroid Invasion Process. *Int J Mol Sci* **23**,  
1197 (2022).

1198 54. D. B. B. C. Pérez-González, M. Di-Luoffo, S. Richon, R. Goswami, M. Baghdadi, F.  
1199 Piastra-Facon, N. Felsenthal, R. Bouras, A. Fumagalli, M. van der Net, M. Gloerich, S.  
1200 Girardo, J. Guck, J. van Rheenen, J. Guillermet-Guibert, E. Hannezo, D. Matic Vignjevic,  
1201 Self-organization of tumor heterogeneity and plasticity (2025).

1202 55. J. Whitehead, D. Vignjevic, C. Futterer, E. Beaurepaire, S. Robine, E. Farge, Mechanical  
1203 factors activate beta-catenin-dependent oncogene expression in APC mouse colon. *HFSP J*  
1204 **2**, 286-294 (2008).

1205 56. M. Ameyar, M. Wisniewska, J. B. Weitzman, A role for AP-1 in apoptosis: the case for and  
1206 against. *Biochimie* **85**, 747-752 (2003).

1207 57. K. H. Vousden, C. Prives, Blinded by the Light: The Growing Complexity of p53. *Cell* **137**,  
1208 413-431 (2009).

1209 58. X. Wang, Y. Zhang, G. Xiao, X. Gao, X. Liu, c-Fos enhances the survival of thymocytes  
1210 during positive selection by upregulating Bcl-2. *Cell Res* **19**, 340-347 (2009).

1211 59. N. Aubert, A. Falluel-Morel, D. Vaudry, X. Xifro, J. Rodriguez-Alvarez, C. Fisch, S. de  
1212 Jouffrey, J. F. Lebigot, A. Fournier, H. Vaudry, B. J. Gonzalez, PACAP and C2-ceramide  
1213 generate different AP-1 complexes through a MAP-kinase-dependent pathway:  
1214 involvement of c-Fos in PACAP-induced Bcl-2 expression. *J Neurochem* **99**, 1237-1250  
1215 (2006).

1216 60. M. Mihara, S. Erster, A. Zaika, O. Petrenko, T. Chittenden, P. Pancoska, U. M. Moll, p53  
1217 has a direct apoptogenic role at the mitochondria. *Mol Cell* **11**, 577-590 (2003).

1218 61. K. A. Veleta, A. H. Cleveland, B. R. Babcock, Y. W. He, D. Hwang, M. Sokolsky-Papkov,  
1219 T. R. Gershon, Antiapoptotic Bcl-2 family proteins BCL-xL and MCL-1 integrate neural  
1220 progenitor survival and proliferation during postnatal cerebellar neurogenesis. *Cell Death  
1221 Differ* **28**, 1579-1592 (2021).

1222 62. J. Li, H. Chen, M. S. Tang, X. Shi, S. Amin, D. Desai, M. Costa, C. Huang, PI-3K and Akt  
1223 are mediators of AP-1 induction by 5-MCDE in mouse epidermal Cl41 cells. *J Cell Biol*  
1224 **165**, 77-86 (2004).

1225 63. E. Shaulian, M. Karin, AP-1 as a regulator of cell life and death. *Nat Cell Biol* **4**, E131-136  
1226 (2002).

1227 64. X. Chen, Z. Xu, K. Tang, G. Hu, P. Du, J. Wang, C. Zhang, Y. Xin, K. Li, Q. Zhang, J. Hu,  
1228 Z. Zhang, M. Yang, G. Wang, Y. Tan, The Mechanics of Tumor Cells Dictate Malignancy  
1229 via Cytoskeleton-Mediated APC/Wnt/beta-Catenin Signaling. *Research (Wash D C)* **6**,  
1230 0224 (2023).

1231 65. M. Kalli, R. Li, G. B. Mills, T. Stylianopoulos, I. K. Zervantonakis, Mechanical Stress  
1232 Signaling in Pancreatic Cancer Cells Triggers p38 MAPK- and JNK-Dependent

1233 Cytoskeleton Remodeling and Promotes Cell Migration via Rac1/cdc42/Myosin II. *Mol*  
1234 *Cancer Res* **20**, 485-497 (2022).

1235 66. M. M. Bras, S. R. Sousa, F. Carneiro, M. Radmacher, P. L. Granja, Mechanobiology of  
1236 Colorectal Cancer. *Cancers (Basel)* **14**, (2022).

1237 67. D. E. Discher, L. Smith, S. Cho, M. Colasurdo, A. J. Garcia, S. Safran, Matrix  
1238 Mechanosensing: From Scaling Concepts in 'Omics Data to Mechanisms in the Nucleus,  
1239 Regeneration, and Cancer. *Annu Rev Biophys* **46**, 295-315 (2017).

1240 68. W. Liang, J. Zuo, M. Liu, Y. Su, B. Guo, J. Hou, Q. Xing, Y. Peng, L. Fang, Y. Cao, J.  
1241 Shan, R. Sun, J. Zhao, J. Wang, VASN promotes colorectal cancer progression by activating  
1242 the YAP/TAZ and AKT signaling pathways via YAP. *FASEB J* **37**, e22688 (2023).

1243 69. A. Totaro, T. Panciera, S. Piccolo, YAP/TAZ upstream signals and downstream responses.  
1244 *Nat Cell Biol* **20**, 888-899 (2018).

1245 70. C. Sheridan, Pancreatic cancer provides testbed for first mechanotherapeutics. *Nat*  
1246 *Biotechnol* **37**, 829-831 (2019).

1247 71. M. Choti, D. Lenrow, A. Roza, J. Markmann, A. Naji, Prolongation of cardiac allograft  
1248 survival by pretransplant administration of cyclosporine and donor-specific dendritic cells.  
1249 *Transplant Proc* **21**, 478-479 (1989).

1250 72. Z. Ivics, M. A. Li, L. Mates, J. D. Boeke, A. Nagy, A. Bradley, Z. Izsvak, Transposon-  
1251 mediated genome manipulation in vertebrates. *Nat Methods* **6**, 415-422 (2009).

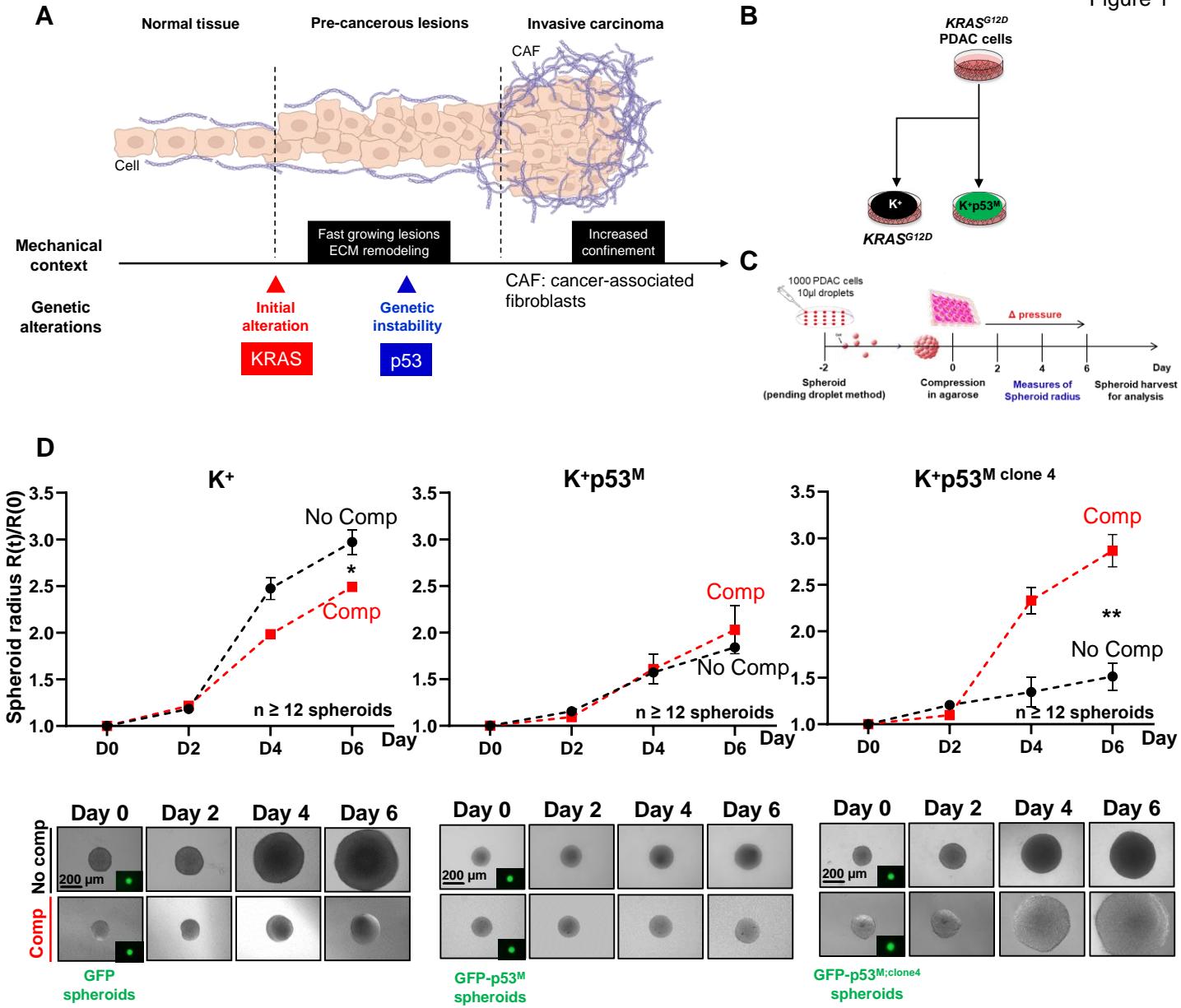
1252 73. B. Thibault, F. Ramos-Delgado, E. Pons-Tostivint, N. Therville, C. Cintas, S. Arcucci, S.  
1253 Cassant-Sourdy, G. Reyes-Castellanos, M. Tosolini, A. V. Villard, C. Cayron, R. Baer, J.  
1254 Bertrand-Michel, D. Pagan, D. Ferreira Da Mota, H. Yan, C. Falcomata, F. Muscari, B.  
1255 Bournet, J. P. Delord, E. Aksoy, A. Carrier, P. Cordelier, D. Saur, C. Bassat, J. Guillermet-  
1256 Guibert, Pancreatic cancer intrinsic PI3Kalpha activity accelerates metastasis and rewires  
1257 macrophage component. *EMBO Mol Med* **13**, e13502 (2021).

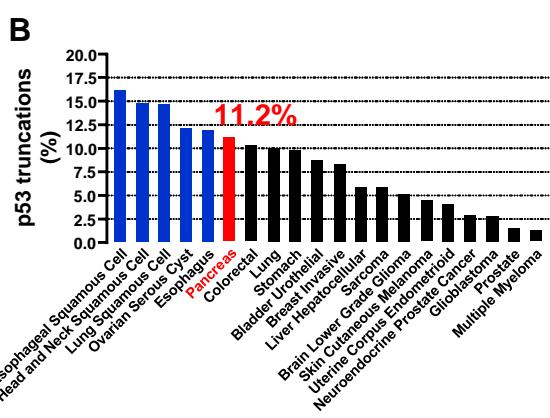
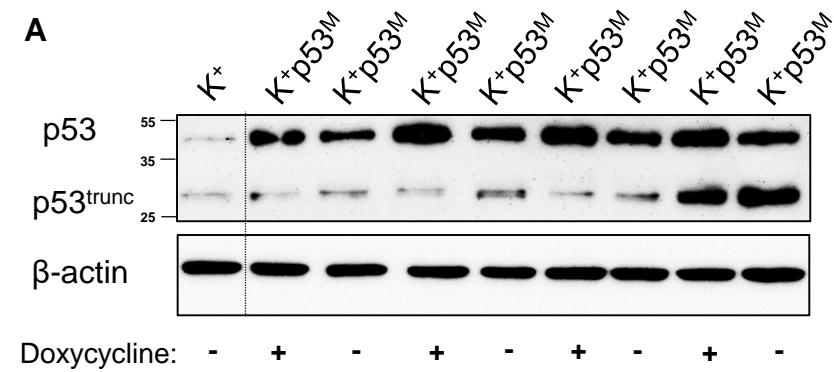
1258 74. J. Guillermet-Guibert, K. Bjorklof, A. Salpekar, C. Gonella, F. Ramadani, A. Bilancio, S.  
1259 Meek, A. J. Smith, K. Okkenhaug, B. Vanhaesebroeck, The p110beta isoform of  
1260 phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is  
1261 functionally redundant with p110gamma. *Proc Natl Acad Sci U S A* **105**, 8292-8297 (2008).

1262 75. I. T. Norton, D. A. Jarvis, T. J. Foster, A molecular model for the formation and properties  
1263 of fluid gels. *Int J Biol Macromol* **26**, 255-261 (1999).

1264 76. M. Ghebremedhin, S. Seiffert, T. A. Vilgis, Physics of agarose fluid gels: Rheological  
1265 properties and microstructure. *Curr Res Food Sci* **4**, 436-448 (2021).

1266 77. H. Kleine-Bruggeney, L. D. van Vliet, C. Mulas, F. Gielen, C. C. Agley, J. C. R. Silva, A.  
1267 Smith, K. Chalut, F. Hollfelder, Long-Term Perfusion Culture of Monoclonal Embryonic  
1268 Stem Cells in 3D Hydrogel Beads for Continuous Optical Analysis of Differentiation. *Small*  
1269 **15**, e1804576 (2019).

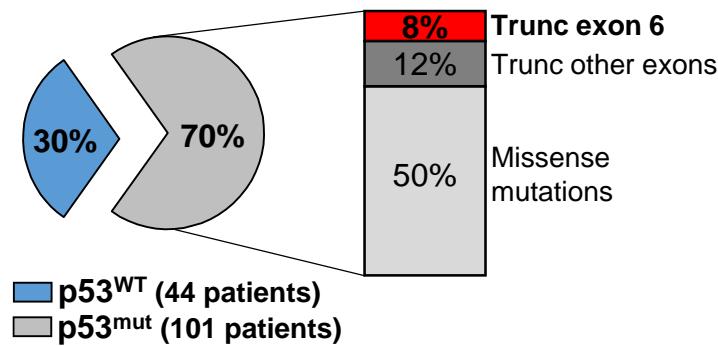

1270 78. D. L. Foxall, J. S. Cohen, J. B. Mitchell, Continuous perfusion of mammalian cells  
1271 embedded in agarose gel threads. *Exp Cell Res* **154**, 521-529 (1984).



1272 79. E. Nurnberg, M. Vitacolonna, J. Klicks, E. von Molitor, T. Cesetti, F. Keller, R. Bruch, T.  
1273 Ertongur-Fauth, K. Riedel, P. Scholz, T. Lau, R. Schneider, J. Meier, M. Hafner, R. Rudolf,  
1274 Routine Optical Clearing of 3D-Cell Cultures: Simplicity Forward. *Front Mol Biosci* **7**, 20  
1275 (2020).

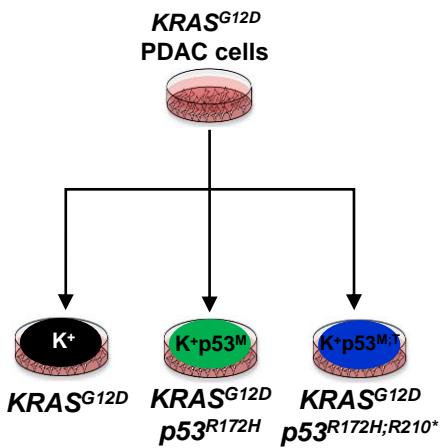
1276 80. K. J. Livak, T. D. Schmittgen, Analysis of relative gene expression data using real-time  
1277 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**, 402-408 (2001).

1278 81. P. Bankhead, M. B. Loughrey, J. A. Fernandez, Y. Dombrowski, D. G. McArt, P. D. Dunne,  
1279 S. McQuaid, R. T. Gray, L. J. Murray, H. G. Coleman, J. A. James, M. Salto-Tellez, P. W.  
1280 Hamilton, QuPath: Open source software for digital pathology image analysis. *Sci Rep* **7**,  
1281 16878 (2017).

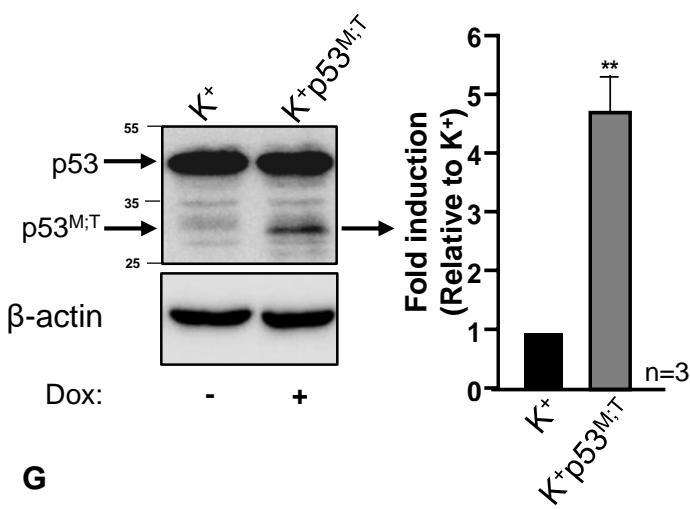
1282  
1283



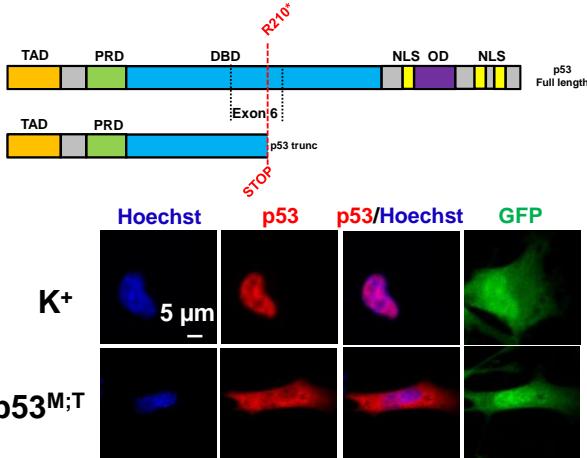




Doxycycline: - + - + - + - + -

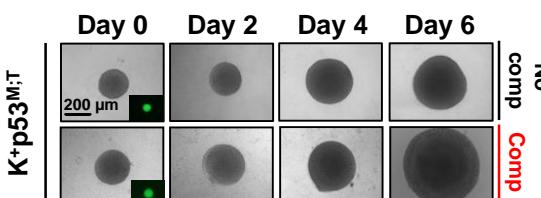
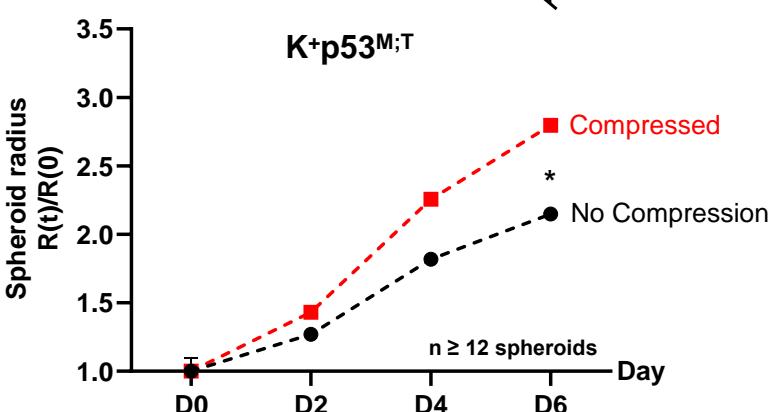
**C**


145 PDAC patients from TCGA cohort

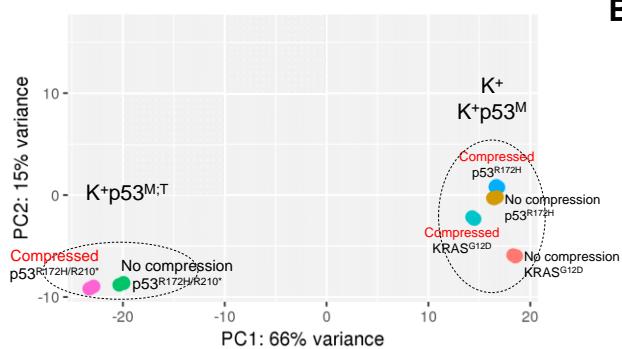



**D**

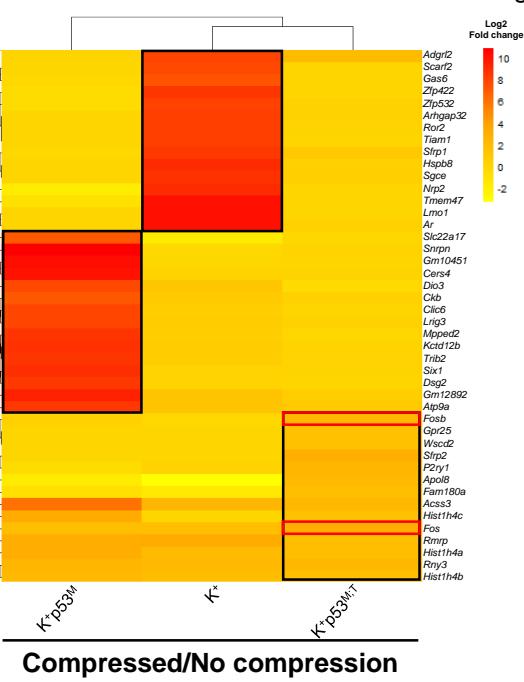




**E**

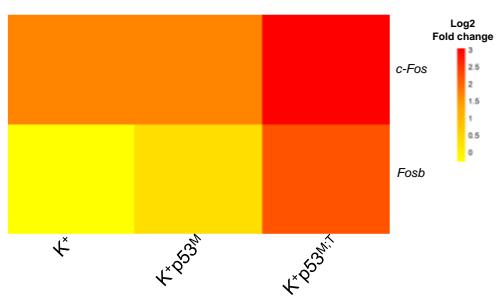



**F**

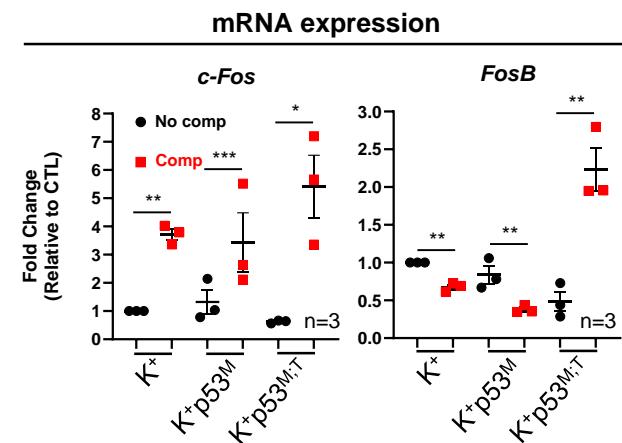



**G**

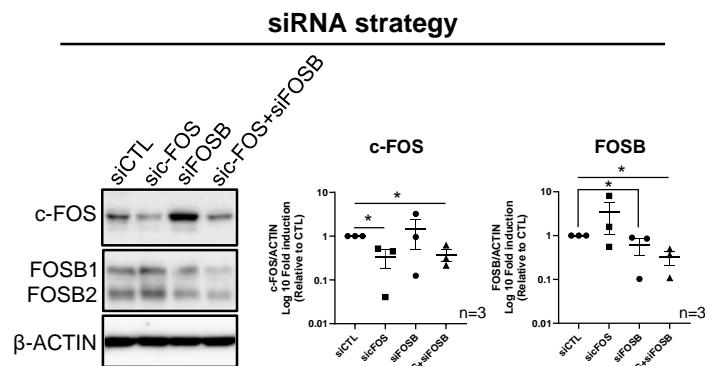



**A**

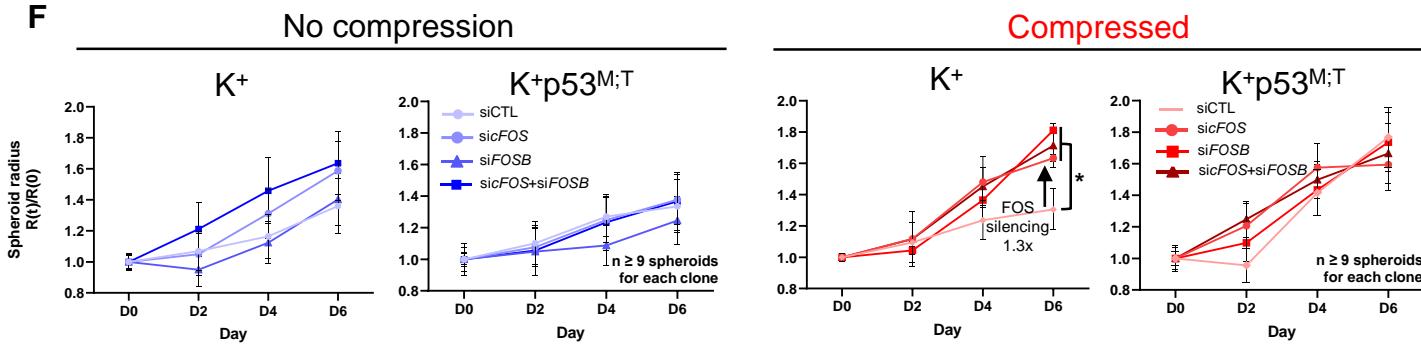


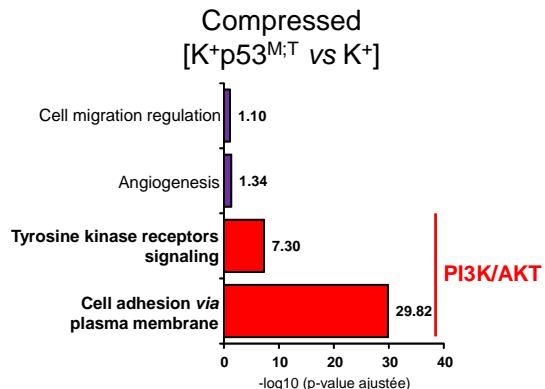
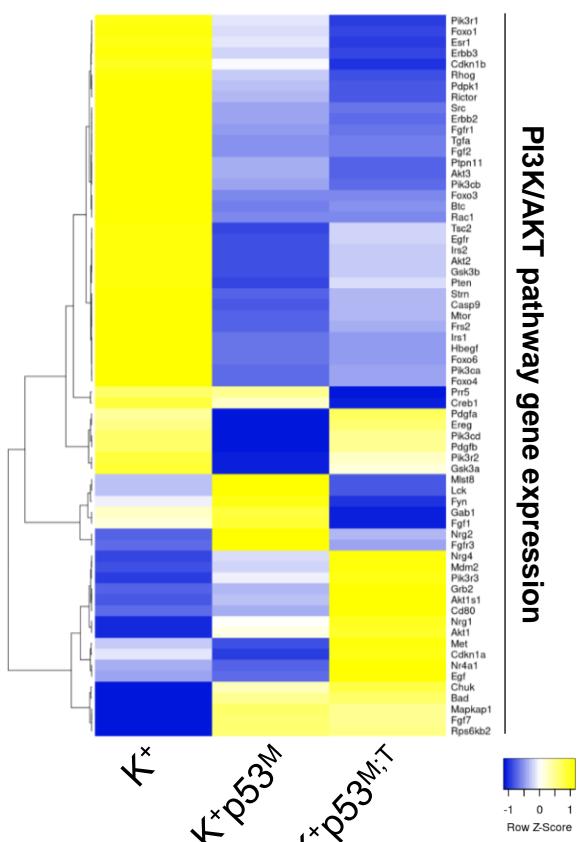
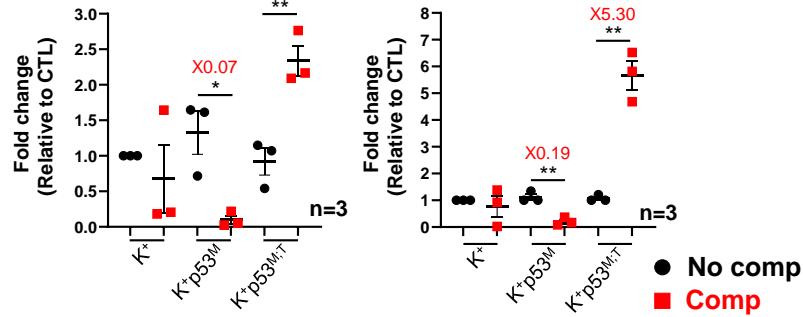

**B**



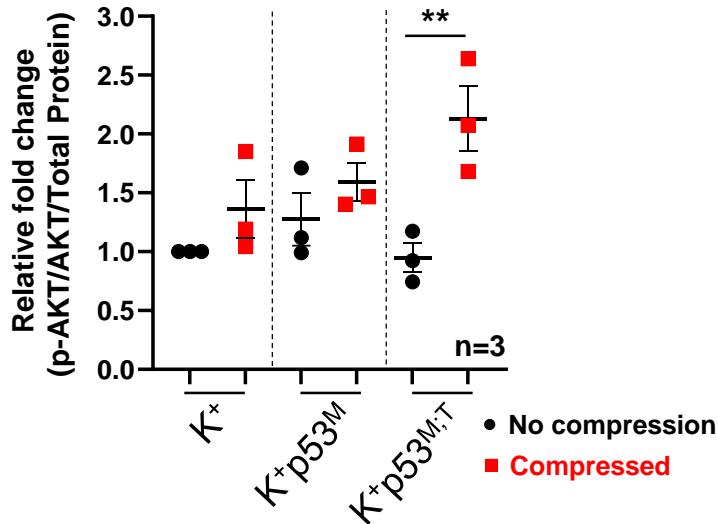
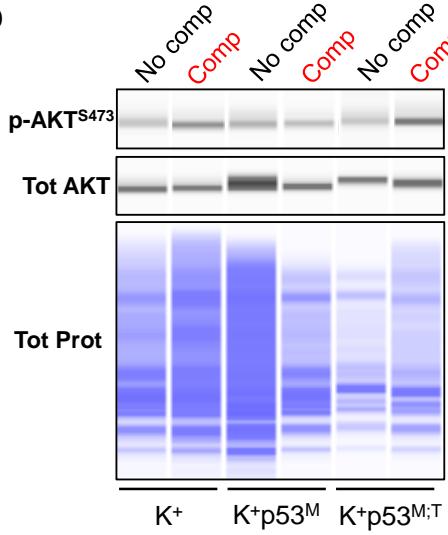
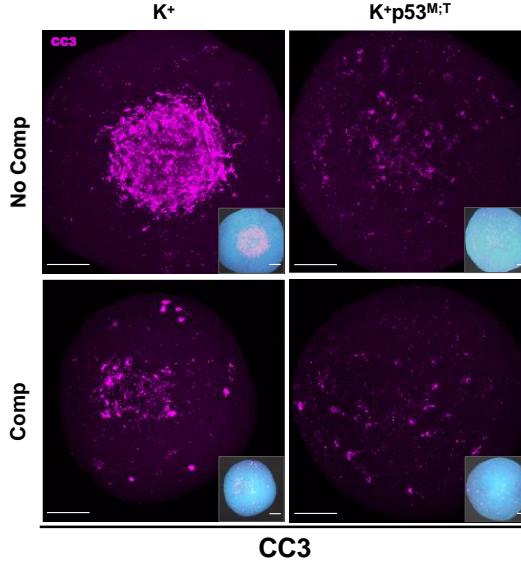

**C**



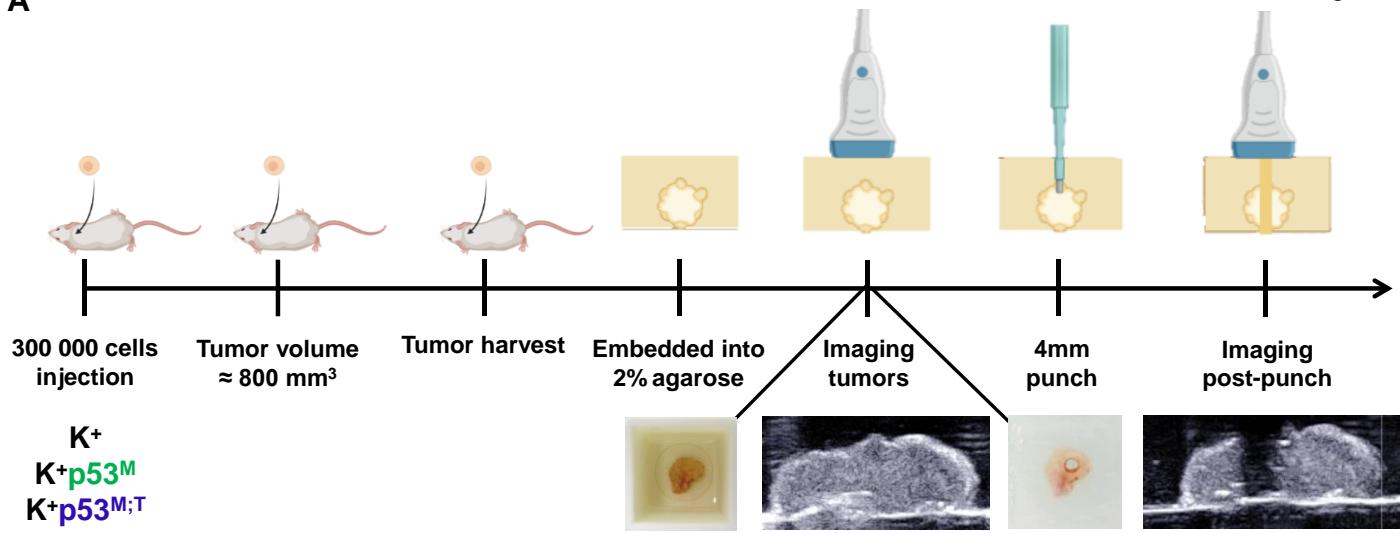

**D**

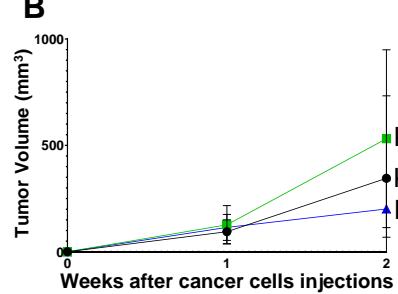

**E**

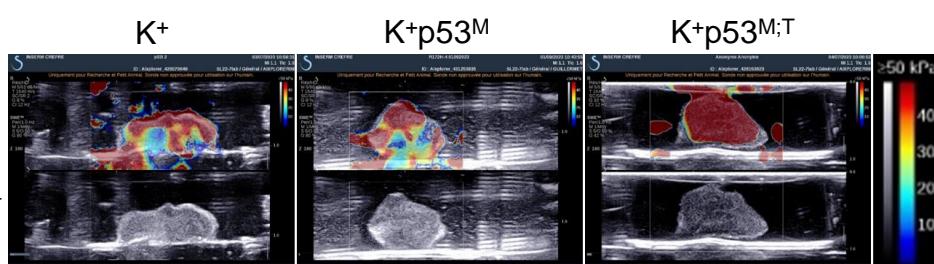

**F**




**A****B****C****mRNA Class I PI3K*****PI3K $\alpha$*** ***PI3K $\delta$*** 


- No comp
- Comp

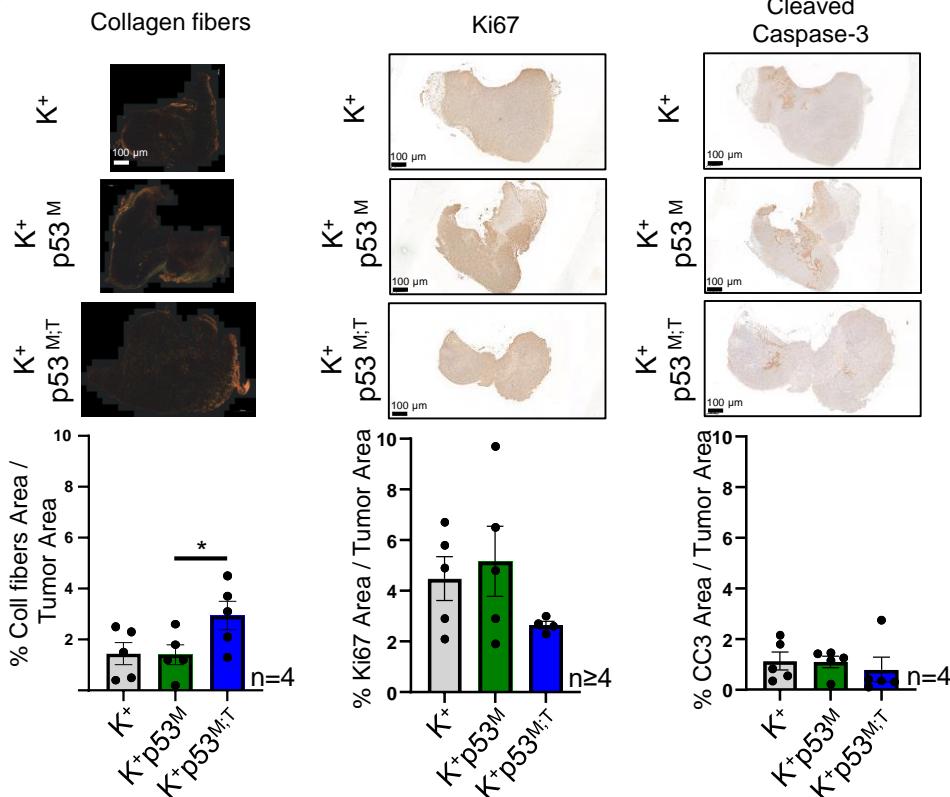
**D****E**


**A**

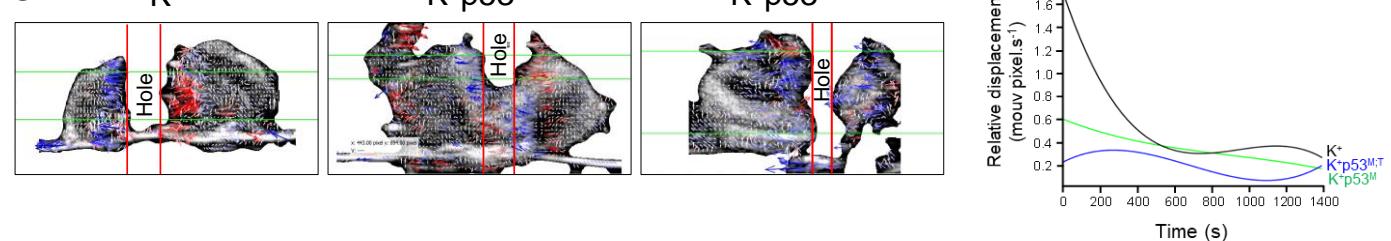


**B**

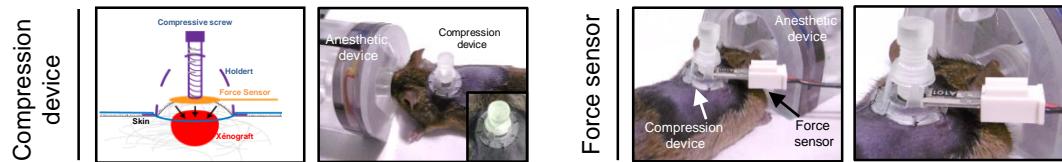



**C**

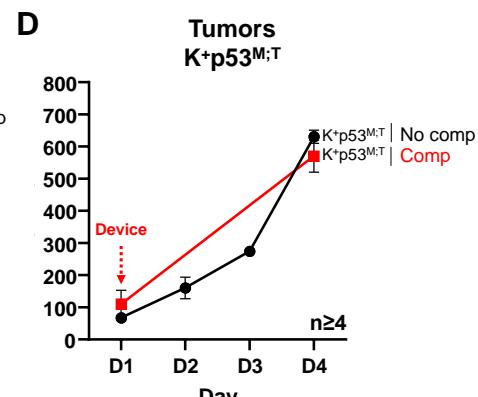
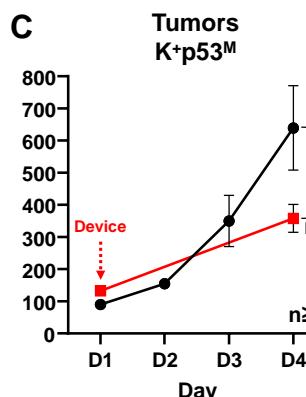
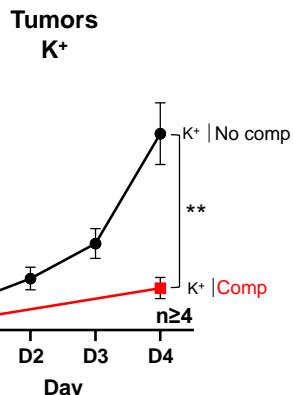



**D**

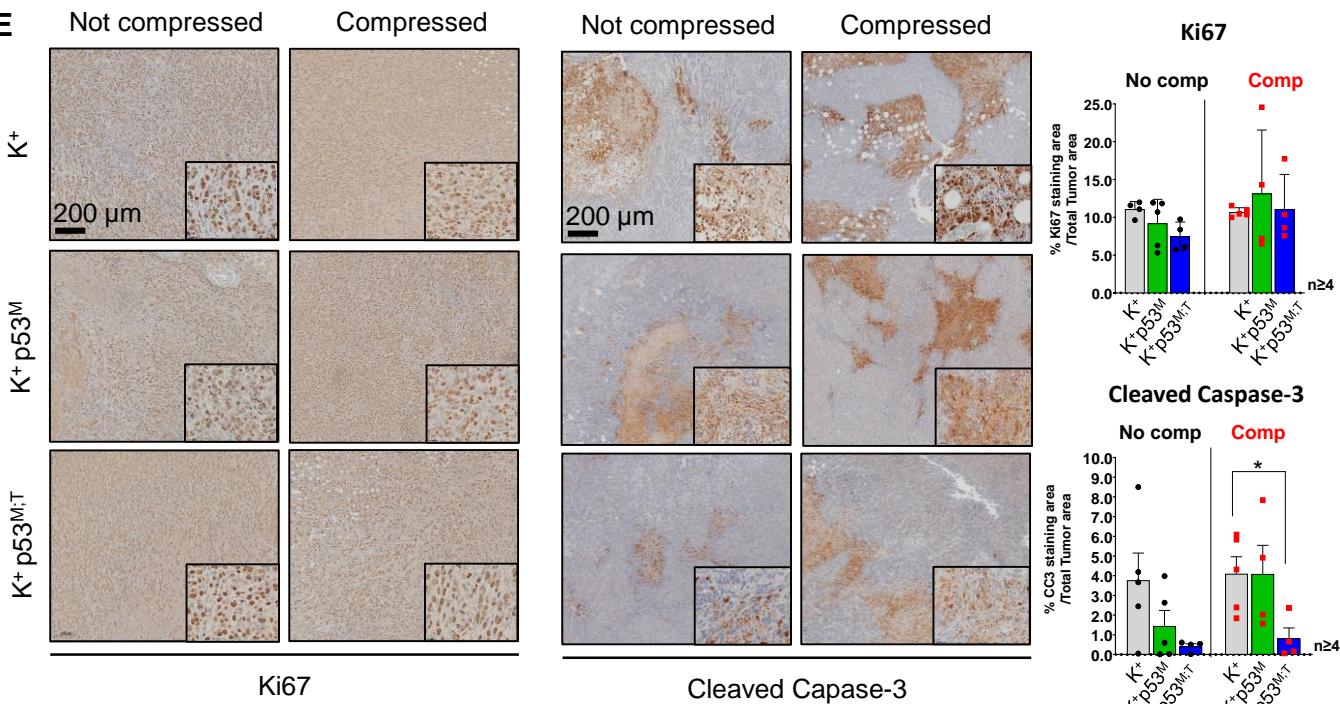



**F**

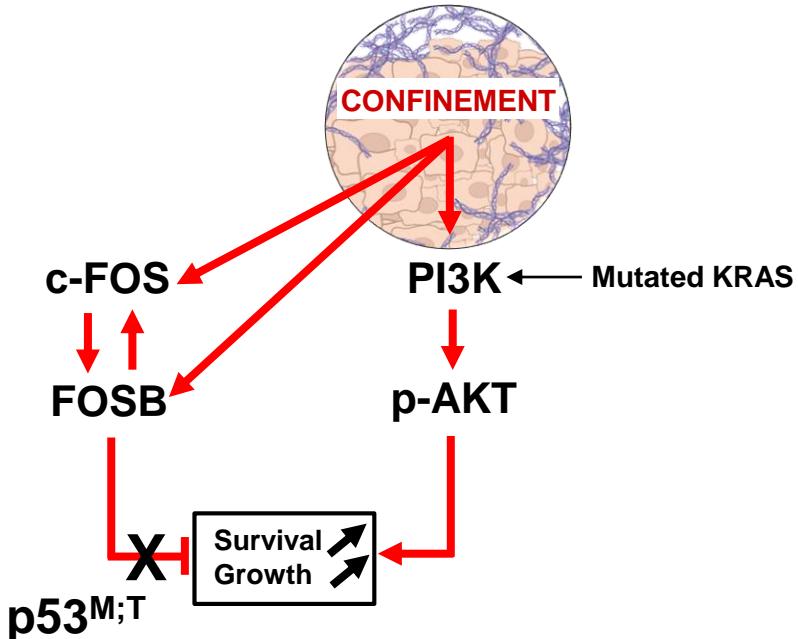





**G**




**A**




**B**



**E**



**F**

